
Procedures as a Gateway to Spacecraft Autonomy

David Kortenkamp and R. Peter Bonasso and Debra Schreckenghost
TRACLabs Inc. at NASA Johnson Space Center ER2

Houston Texas 77058
kortenkamp@jsc.nasa.gov

Abstract

This paper examines the role of procedures in operating
crewed spacecraft and how procedures can serve as an
entry point for spacecraft autonomy. Procedures repre-
sent the knowledge necessary to operate a system and
are a critical component of crewed spaceflight. Histor-
ically, procedures have been executed by humans read-
ing from a piece of paper or a static display. In this
paper we describe a new procedure paradigm in which
procedures are computer-understandable and can be
executed by either humans or computers. This requires
new procedure and system representations, develop-
ment tools, autonomy software and displays. A pro-
totype procedure development and execution system is
described and applied to a space station procedure.

Introduction

Spacecraft autonomy involves using software systems to
minimize the need for human (crew members or ground
control personnel) intervention in routine spacecraft op-
erations. Implementation of spacecraft autonomy for a
crewed mission requires a careful examination of how
crewed spacecraft are currently operated and decisions
about where to insert autonomy software. A potential
insertion point for on-board autonomy is procedure ex-
ecution. For current crewed missions (i.e., Space Shut-
tle and Space Station), procedures are primarily exe-
cuted manually by crew members or ground controllers
and are not designed for autonomous execution. There
is a very crisp line between on-board autonomy soft-
ware, which mainly deals with real-time control and
anomaly response, and manual procedures, which deal
with system moding and reconfiguration, mission goals,
and complex diagnosis and recovery. This paper exam-
ines research that blurs the crisp line between creating
spacecraft procedures that are designed for either au-
tomated or manual execution. This concept, called ad-
justable autonomy, will allow for incremental automa-
tion of spacecraft operations as crew and ground con-
trollers become more and more comfortable with au-
tomated technologies executing formerly manual pro-
cedures while still allowing for manual execution when
desired.

Procedures

Procedures encode the operational knowledge of a sys-
tem as derived from system experts, training and ex-
perience. They are essential to the safe and efficient
operation of any complex system. NASA has literally
tens of thousands of procedures for Space Shuttle and
Space Station, both for the flight controllers and for the
crews. They are the accepted means by which any user
commands a system.

Procedures have a complicated and involved lifecycle.
The lifecycle of a procedure starts with knowledge ac-
quisition about the system, its operating requirements
and the mission goals it supports. The system can be an
on-going vehicle such as the Space Station or a one-time
payload such as a scientific experiment. Knowledge ac-
quisition leads to procedure editing during which the
first instance of a procedure is created. The procedure
is then validated and verified manually using simulators
– feedback to the procedure editor about any changes to
the procedure is given at this time. A validated proce-
dure is handed off to training personnel, which develop
a training plan for the end user. Again, there may be
feedback to the procedure editor. Finally, the procedure
is ready for execution in a flight situation. Support-
ing this procedure lifecycle, especially as we move to
flexible procedures, creates many software engineering
challenges and requires an integrated suite of procedure
development tools.

Procedures today

Space shuttle procedures are written using Microsoft
Word and then printed and bound into books that fly
with every shuttle mission. These books, along with ad-
ditional ground procedures and detailed reference ma-
terial, are also developed for flight controllers. This
system, while inflexible, works well for a stable, known
vehicle that changes little between missions. Space Sta-
tion procedures are also currently authored using Mi-
crosoft Word. However, rather than being printed, they
are instead converted to an eXtensible Markup Lan-
guage (XML) representation and viewed using the In-
ternational Procedure Viewer (IPV). This has the ad-
vantage of reducing paper (and thus weight) and mak-
ing updates much easier. This is appropriate for an



evolving piece of hardware. However, for all of this
progress, the XML representation is still presentation
based because it is only used to denote where and how
to display a procedure (e.g., what font, what indenta-
tion, whether bold or plain). The current XML repre-
sentation is not capable of denoting the content of the
procedure such as what the procedure is supposed to
accomplish and in what context. In essence, the proce-
dures are machine readable for purposes of display to
a human but they are not machine understandable for
purposes of autonomous execution of those procedures.

Procedure example

Figure 1 shows a snippet of a Space Station electri-
cal power system (EPS) malfunction procedure. Pro-
cedures are typically divided into two types: 1) mal-
function procedures, which help users to troubleshoot
and diagnose a problem; and 2) checklist procedures,
which guide users through nominal spacecraft opera-
tions. The EPS malfunction procedure triggers when
event code 5520 is issued by the Space Station caution
and warning system. The triggering of this malfunction
procedure is manual, i.e., a ground controller or crew
member notices the 5520 event code, pulls up the ap-
propriate procedure and begins executing it. Execution
consists of following the steps of the procedure. Step 1
checks to see if the event code has cleared on its own
within three minutes. If so, execution proceeds to Step
2. If not, execution proceeds to Step 4. Let’s assume
the advisory clears. Step 2 is simply a warning to the
user that the next step will have the consequence that
data will be lost. Execution then proceeds to Step 3,
which actually clears the data. The details in Step 3 are
peculiar to Space Station operations in that the user ex-
ecuting the procedure navigates through Space Station
displays in order to issue commands. The “sel” opera-
tions are selections of display windows. The final cmd
is represented as a button on the displays that the user
needs to press. Another interesting aspect of this pro-
cedure is Step 5. This is a call out to execute another
procedure (a checklist procedure in this case) and then
return and continue. We will use the first three steps
of this malfunction procedure throughout this paper to
illustrate our ideas.

The bigger picture

Procedures, while important, are only a small part of
the process of operating a crewed spacecraft. Pro-
cedures encode the means by which a spacecraft can
be operated and are relatively static. Procedures do
not specify when (in time) they should be executed
or for what purpose. This is the role of a mission
plan. A mission plan is developed well before a mis-
sion and takes into account the various mission goals,
personnel, time, resources and constraints. For ex-
ample, mission planning on Space Station can begin
up to a year before a new crew goes to station in
involved consultation with international partners, sci-
entists, public affairs, etc. (Korth & LeBlanc 2002;

Balaban et al. 2006). As a mission approaches, the
plan becomes more and more detailed and fixed. As the
mission unfolds, small parts of the plan are uploaded to
the crew for execution. For Space Station, a weeklong
plan, called an Onboard Short Term Plan (OSTP), is
sent up daily for the next week of the mission. That
plan consists of a partially ordered set of tasks on a
timeline for each crew member. Tasks can be either
procedures or activities. Procedures we have discussed
in length and the plan states when a procedure should
be run and by whom. Activities are things the crew
or automation do that do not have procedures, such as
sleeping, eating, automatic data downloads, etc. Mis-
sion planners use procedures as their building blocks to
create a successful plan that meets mission goals and is
safe.

Building and executing procedures

A variety of tools, representations and software pro-
cesses are necessary to build and execute procedures in
an adjustably autonomous fashion. Ideally these tools,
representations and processes are integrated such that
they easily share information. In this section we present
the tools, representations and software processes that
we have developed for building and executing proce-
dures.

Procedure representation

Procedures will need to be machine understandable in
order to support adjustable autonomy concepts. This
means that procedure content must be encoded. For
example, procedure content includes the context (pre-
conditions) that must be true for the procedure (or its
steps) to be valid and to achieve its success condition
(goal) and whether these pre-conditions need to hold
only at the start of the procedure or during its entire
execution. As another example, procedure content in-
cludes what the procedure accomplishes (success con-
ditions or other post-conditions). Content can also in-
clude the resources required by the procedure, the time
necessary to complete it or the skills the crew member
needs to perform it. The procedure execution assistance
tools will need additional content information including
paraphrasing knowledge for presentation, speech gener-
ation and links to embedded images or videos for just-
in-time training.

The first three steps of the EPS malfunction
procedure shown in Figure 1 are represented in
a presentation-based representation similar to PDF.
While easily read and interpreted by a trained human,
this plain text format is not understandable by a com-
puter, and there is no information about what this pro-
cedure accomplishes or what is necessary in order for
the procedure to be used. It also requires the end user
to navigate through complicated displays to issue a sim-
ple command.

We have been developing a new procedure represen-
tation called the Procedure Representation Language



Figure 1: First five steps of an EPS malfunction procedure.

Figure 2: First step of the EPS malfunction procedure in PRL.



(PRL). This language keeps the user friendly display
format of current procedures but augments this with
content-based information required for autonomous ex-
ecution or tracking. We accomplished this by integrat-
ing features of the PLEXIL automated execution lan-
guage developed at NASA (Verma et al. 2005) with
the existing XML schema for procedures. The PLEXIL
representation is similar to (and inspired by) many ex-
isting procedural representations that have been effec-
tive in autonomous vehicle control over the years (e.g.,
(Georgeff & Lansky 1986; Simmons & Apfelbaum 1998;
Firby 1987). Other domains have also looked at pro-
cedural representations with great success (Ram et al.
1998).

Structure of a procedure The basic structure of a
procedure as represented in PRL is:

• Meta data: Includes a unique identifier, the proce-
dure name, the procedure author, date, etc.

• Automation data: Includes the following:

– Start conditions: a boolean expression that when
evaluated to true means that the procedure can
start

– Repeat-until conditions: keep performing the pro-
cedure until this boolean expression becomes true

– Pre-conditions: evaluated after the start condition
and if true then begin executing the procedure

– Post-conditions: evaluated after a procedure is
done and if it evaluates to false then the procedure
has failed

– End conditions: evaluated continuously and when
it is true execution of the procedure is finished

– Invariant conditions: must remain true during the
entire execution of the procedure

– Resources: any resources (time, fuel, crew mem-
bers, power, tools, etc.) required for execution of
this procedure

• Computations: Mathematical formulas that can be
used throughout the procedure

• Local Variables: Declarations of any variables used
internal to the procedure

• Contexts: Defines the optional sets of context-
sensitive values that can be used to instantiate this
procedure for execution

• ExitModes: Definition of explicit procedure exit
modes, specifying procedure success or failure, and
giving optional description of the reason for exiting

• ProcTitle: Procedure number and title

• InfoStatement: Specifies explanatory information
(e.g. notes, cautions, warnings) that might be needed
or desired by a human executor

• Step: A step is the basic organizing structure of a pro-
cedure. A procedure can contain one or more steps
and each step consists of the following parts:

– Automation data: As above except replace the
word “procedure” with “step”

– Step title and unique identifier

– Information to be displayed to the user before this
step is executed in manual operations

– Step content, which contains an instruction con-
sisting of the following:

∗ Automation data, as above except for instructions
∗ Commands: Either executed through software or

manually through a crew member
∗ Input: Information entered into a local variable

from an external source such as a crew member
∗ Verify: A check on telemetry or by a crew member

of a specific system state
∗ Procedure call: A call to another procedure
∗ Wait: A wait until a boolean expression becomes

true or until a particular amount of time has
passed

∗ Control statements such as if-then-else, while or
for-each

– Conditional branch, which contains a set of
boolean expressions paired with a goto step or exit
procedure command that is executed if the boolean
expression is true. This defaults to go to the next
step if no conditional branch is given.

Example Figure 2 shows the first step of the EPS
malfunction procedure represented in PRL. First, note
that PRL is an XML schema. Second, that branch-
ing and the conditions for branching are explicitly rep-
resented as boolean and goto statements. Third, the
waitForBranch attribute determines if this conditional
branch should wait for one of the conditions to be true
(the “true” value) or fall through to the next step if
none are true. Fourth, the DataReference tag means
that this is an external signal that needs to be read in
at runtime. The “ontology” attribute states that at ex-
ecution time the executor should look into the system
representation for where to find this value (see next sec-
tion). Finally, notice that there are still human readable
elements in this representation such as the step title and
departure description. With all of the content of this
step made explicit, it is now possible to automate its
execution. In fact, Section will describe just such an
automated execution.

System representation

Procedures describe the processes by which a device or
system1 is operated or debugged. They are oriented
towards achieving some task or goal. They do not de-
scribe the device or system. However, a representa-
tion of the system is necessary for procedure execution.
That is, a representation of all of the possible com-
mands, telemetry, states, state transitions, connections

1A device or system in this context should be interpreted
broadly and can mean software, a robot or an entire vehicle
or habitat



and taxonomy of the device or system is required to
support procedure authoring and execution. This rep-
resentation is different from the procedure representa-
tion described in the previous section.

Commands and telemetry The representation of
commands and telemetry is necessary so that the pro-
cedure author knows what atomic elements are avail-
able to construct a procedure. Furthermore, the ex-
ecutive (manual or automated) must know how to
get information from, or send action to, the con-
trolled system and in what format. Ideally this rep-
resentation of commands and telemetry should come
from the hardware designer or vendor. We have
chosen an industry standard representation called
XML Telemetric and Command Exchange (XTCE)
(http://space.omg.org/xtce/index.htm) for represent-
ing commands and telemetry.

States The representation of states and state transi-
tions is necessary so that the procedure author can ref-
erence them in preconditions and postconditions (e.g.,
don’t do this procedure when the device is in this state)
and so that the executive can check these states when
executing the procedure. The state representation of a
device could come early in its design before the hard-
ware implementation and before specification of com-
mands and telemetry. This would allow for early devel-
opment and testing of procedures against a state model
of the device. While we could extend XTCE to add
state information, we felt that a separate representation
would be more powerful. We have chosen State Chart
XML (SCXML) (http://www.w3.org/TR/scxml/) for
representing states and state transitions.

Taxonomy A system representation also needs to in-
clude the components of the system and the relationship
between components – this is usually called a taxonomy.
There are two kinds of relationships we expect to cap-
ture. First there is a hierarchical relationship between
spacecraft components. For example, a spacecraft con-
sists of many systems – power, life support, navigation,
propulsion, etc. Each system has many subsystems and
subsystems have components (valves, tanks, switches,
etc.). Hierarchy and containment are important to rep-
resent in order to allow for efficient display and reason-
ing. The second kind of relationship is connectivity be-
tween spacecraft components. For example, the output
of an oxygen generation system may be connected to an
oxygen storage tank or a battery may be connected to a
power distribution component. Connectivity is impor-
tant to represent so that situation awareness displays
can be built for humans. We are still in the process
of determining appropriate taxonomy representations –
existing standards such as XML Metadata Interchange
(XMI) may be appropriate.

System-level constraints Any complicated system
will have overarching constraints and flight rules. An
example is the flight rule that the Space Station
shouldn’t thrust when there is an Extravehicular Ac-

tivity (EVA). This type of information is not captured
in PRL or in the various files discussed in the previous
sections. Currently flight rules and other global con-
straints are captured in documents written in natural
language. This makes it impossible for software tools to
reason over these constraints and check for consistency
and applicability. This also makes it possible to check
constraints during run-time to enhance safety. We are
in the early stages of exploring how to capture these
flight rules and global and are considering the Object
Constraint Language (OCL) of UML as a possible rep-
resentation of system constraints.

Dependencies Each of these system representations
and the procedure representation depend upon each
other. The procedure representation (PRL) needs to
reference commands, telemetry and states. The system
state representation needs to map telemetry to states
and commands to state transitions. The system-level
constraints will be between system states. A core set
of components will be stored in the XTCE represen-
tation. The taxonomy will use that to create hierar-
chies and connections. An additional representation is
needed to store graphical information such as the loca-
tion of information on a screen or its attributes (color,
font, icons, etc.). A rendering program can use this
display representation in conjunction with the taxon-
omy, the XTCE and the system state representations
to provide situational awareness.

Procedure development environment

Procedures will need to be authored, viewed, verified,
validated and managed by a variety of people, many
of whom will not understand XML or other representa-
tions. We are developing a Procedure Integrated Devel-
opment Environment (PRIDE) that will provide an in-
tegrated set of tools for dealing with procedures. We are
using the open source Eclipse (www.eclipse.org) plat-
form to implement PRIDE.

Functions We have identified the following functions
of a procedure integrated development environment:

• Authoring

– Graphical

– Textual

– Syntax checking (e.g, is procedure properly
formed?)

– Syntax constraints (e.g., is a variable assignment
within range?)

• Viewing

– Static views as seen by end user

– Dynamic views that can change based on real-time
inputs

• Interaction

– Ability to send information outside of PRIDE

• Verification and Validation



– Check procedures against flight rules

– Check procedures against system constraints

– Assist in evaluation of simulation results

• Configuration and workflow management

– Verifying links to other procedures

– Interaction with a procedure repository

– Interaction with workflow processes (e.g., proce-
dure sign-off)

In the rest of this section we will focus on how we are
providing the graphical authoring function in PRIDE.

Authoring Procedures will initially be authored by
system experts. The experts will not be programmers
and will not have familiarity with XML or content ori-
ented representations. We need to develop authoring
tools that allow experts to express their intents with-
out needing to understand the details of the underlying
language. We also expect procedures to be edited by
multiple experts, each with different goals. For exam-
ple, the system expert will outline the initial procedure.
A human factors expert may then annotate that ini-
tial procedure with information about how to display
it to the end user. An automation expert may further
annotate the procedures with information pertinent to
automated procedure execution.

To implement the procedure authoring function in
PRIDE we are taking advantage of the Eclipse Graph-
ical Modeling Framework (GMF) to import the PRL
XML schema and convert it to an Eclipse Modeling
Framework (EMF) representation. From that we can
create a palette that represents PRL structure and com-
mands. Authors can drag from that palette onto ei-
ther a graphical view of the procedure (see Figure 3).
Additional palettes allow for dragging commands and
telemetry (from the XTCE file described in Section ),
states (from the SCXML file described in Section ) or
callouts to other procedures. Once a procedure is au-
thored, PRIDE can output the instantiated PRL XML
file for use by other tools.

Automated procedure execution

Procedures can be executed autonomously using an
execution engine, which interprets the procedure rep-
resentation and issues commands to the underlying
system. There has been a great deal of research
in the last decade on procedural execution systems,
with some of the more prominent being PRS (Georgeff
& Ingrand 1989), RAPS (Firby 1989), Teleoreactive
Programs (Nilsson 1994), Universal Plans (Schoppers
1987), APEX (Freed 1998) and TDL (Simmons &
Apfelbaum 1998). The Space Station program also has
a procedural execution system called Timeliner from
Draper Laboratories. While underlying implementa-
tion details may change, all procedural executives have
similar functions: 1) they have a library of applicable
procedures; 2) they choose procedures that are eligible
to run by matching start and pre-conditions with sys-
tem states and telemetry in realtime; 3) they decompose

hierarchical procedures into subprocedures; 4) they dis-
patch commands to lower level control processes; and
5) they monitor for relevant states in the system. We
will expand on these functions in the next section.

Execution functions Most procedure execution sys-
tems have the following core functions:

• Monitoring and State Management: Maps the
low-level signals and states to appropriate state con-
ditions in the procedure. Checks for conditions to ini-
tiate step transitions or change resource allocations.

• Procedure Selection: Instantiates procedures and
refines those procedures by decomposing procedures
into steps, instructions, or calls to other procedures.
This function also manages the acceptance, priori-
tization and selection of multiple applicable proce-
dures.

• Procedure Execution: Dispatches commands to
low-level control processes to bring about change in
the operational environment and enables monitoring
through sensors and states to monitor the effects of
these commands. This function prioritizes the exe-
cution of concurrent activities and is responsible for
transitioning procedure components (steps, instruc-
tions, etc.) through their operational states, e.g., in-
active, completed, failed, etc..

• Resource Allocation: Assigns resources to eligible
tasks and maintains these assignments based on task
priority and resource availability.

Execution interfaces The procedure execution sys-
tem needs information from a variety of sources and
produces information that is needed by other processes.
Specifically, the executive needs the following informa-
tion to function correctly:

• The procedure tasks themselves in a procedure rep-
resentation. This can be a static file or sent to the
executive from a planner.

• Task execution information such as what tasks should
be executed when or what tasks should be withdrawn
from execution.

• Telemetry from the underlying system that is being
controlled

The executive produces the following information
that may be used by other processes:

• Commands, including parameters, that are dis-
patched to lower level control processes

• Task execution data such as status of the procedures,
steps, and instructions (e.g., completed, failed, pend-
ing, etc.) and the status of resources

• State query responses in which external processes can
query the executive’s state and monitoring informa-
tion



Figure 3: A procedure authoring tool implemented in Eclipse.

End user procedure display

Humans are an important part of the procedure process.
The end user is the person who will be either executing
the procedure or monitoring the autonomous execution
of a procedure. The end user may also switch back and
forth between manual and autonomous execution (e.g.,
execute the first two steps manually, then have the au-
tonomous executive execute the next three steps, then
execute the next step manually, etc.). Thus, the end
user will need a display interface that supports this ad-
justable autonomy mode of operation. We hope to reuse
much of the software that is built for authoring proce-
dures (see Section ) as the end user interface without
the authoring capabilities. Ideally, the end user inter-
face will look similar to the “paper” procedures of today
(e.g., Figure 1), but allow for direct execution of com-
mands and direct display of telemetry by the end user.
The end user interface will also have to display the re-
sults of procedure tracking (next section) by highlight-
ing or otherwise noting steps that have been completed,
steps that are currently executing, and steps that are
pending. Execution status, especially failures, will need
to be made explicit. Support for adjustable autonomy
requires an easy way to note steps that should be done
manually and steps that should be done automatically.

For a single procedure being done by a single end
user the display requirements are not demanding. How-
ever, if we begin to address multiple procedures be-
ing executed in parallel by one or more end users with
interaction between them, then a wider variety of is-
sues arise. These include notification of the status of
other end users or executives, interruption reasoning,

and multi-modal notification. For example, a proce-
dure may have a step that is a wait for some lengthy
period of time (say one hour) at which point an end user
could begin another parallel procedure. At the end of
the hour the end user would need to be notified ap-
propriately, find a break-point in their new procedure,
return to the old procedure, get situated, and begin ex-
ecuting. In another example, two end users that are
separated by distance may be performing a single pro-
cedure (say an EVA astronaut and a ground controller)
and need to coordinate their activities. We have begun
addressing these issues and will integrate our results
into our expanding tool suite (Schreckenghost 1999;
Schreckenghost et al. 2002).

Procedure tracking

Procedures will continue to be executed manually in up-
coming space missions. There will be actions that can
only be done by a person for physical or operational
reasons. This poses problems for an adjustably au-
tonomous approach to procedure execution. In a purely
automated approach the executive knows exactly what
is being done and what the status is. However, if some
parts of the procedure are manual, then the current ex-
ecution status will need to be inferred from telemetry or
by direct query to the end user. The procedure track-
ing process does this inference. It uses all available data
to determine which step of the procedure is being exe-
cuted and what the execution status is. It then makes
this available to other processes such as the executive
and the end user display.



Figure 4: A procedure building and execution architec-
ture.

Case study

We have assembled the components described in the
previous section into a procedure building and execu-
tion architecture (see Figure 4 and used this architec-
ture to execute the first three steps of the EPS malfunc-
tion procedure (Figure 1). Our current PRIDE imple-
mentation is capable of handling only a subset of PRL,
so we encoded the EPS malfunction procedure directly
into a PRL XML file. This was then translated by hand
into a representation used by RAPS (Firby 1987). The
execution engine used in our case study is RAPS, which
is implemented in LISP. We represented the commands
and telemetry required for this procedure in XTCE and
then hand-translated that into the RAPS representa-
tion. RAPS was connected via a CORBA gateway to a
low-fidelity simulation of the International Space Sta-
tion. We are in the process of replacing the low-fidelity
simulation with a high-fidelity simulation and will re-
port on that in the final version of this paper. The
execution engine sends execution status via CORBA
to a procedure tracker implemented using a temporal
pattern recognition system called CERA (Fitzgerald et
al. 2006). The procedure tracker, in turn, determines
when steps of the procedure have been started, finished,
failed, etc. and passes this information via CORBA
(and some intermediary processes) to an end user in-
terface written in Eclipse that displays the procedure
steps and changes their colors as their execution status
changes.

Future work: Dynamically

reconfigurable procedures

The process described in this paper focuses on proce-
dures that are authored well before a mission and that
are relatively static throughout the lifetime of a de-
vice or vehicle. In the future we envision a paradigm
shift where procedures are treated as evolving, recon-
figurable and reusable entities instead of the static, in-
flexible entities used currently. We envision a database
of procedure fragments, each of which is intended to
perform a single, well-defined operation. Procedures
to accomplish larger multi-step operations are assem-
bled and verified on-the-fly from these smaller proce-
dure fragments, similar to what humans do currently
by hand. In early missions, procedures could be assem-
bled on the ground with significant human oversight.
However, we envision moving all procedure fragments
on-board and having them automatically assembled for
crew members in response to their daily tasks and cur-
rent mission context. Because future exploration mis-
sions will likely use modular, reconfigurable systems, it
will be impossible to predefine all of the possible pro-
cedures for all possible system configurations. By care-
fully defining our procedure representation we can ask
system vendors to deliver procedure fragments for oper-
ating their system that will be added to the database.
Thus, when systems are integrated, procedures could
also be integrated with ease. The procedure represen-
tation, authoring tools, and execution engines currently
under development are key components of the move to
dynamically reconfigurable procedures.

Conclusion

Procedures will continue to be a primary component
of crewed spaceflight operations. By developing new
tools, representations and software we can enable ad-
justably autonomous procedures in which humans and
automation work together to handle basic spacecraft
operations. This can result in more efficient and safe
spacecraft operations.

Acknowledgements

The authors wish to thank colleagues at NASA Ames
Research Center who participated in discussions under-
pinning many of the ideas presented in this paper, in-
cluding Ari Jónsson, Vandi Verma and Michael Freed.
Colleagues at NASA Johnson Space Center contributed
to this paper including Lui Wang and Bebe Ly. The au-
thors also wish to thank S&K Technologies employees
Scott Bell, Kevin Kusy, Tod Milam, Carroll Thrones-
bery and Mary Beth Hudson who helped implement
many of the software processes described in this pa-
per. Bob Phillips and David Cefaratti of L3 Com par-
ticipated in definition of the Procedure Representation
Language. Wes White and Michel Izygon of Tietronix
Inc. provided assistance in understanding space station
procedures. This work is supported by NASA’s Explo-
ration Technology Development Program (ETDP) un-



der the Spacecraft Autonomy for Vehicles and Habitats
(SAVH) project.

References

Balaban, E.; Orosz, M.; Kichkaylo, T.; Goforth, A.;
Sweet, A.; and Neches, R. 2006. Planning to ex-
plore: Using a coordinated multisource infrastructure
to overcome present and future space flight planning
challenges. In Proceedings of the AAAI 2006 Spring
Symposium on Distributed Plan and Schedule Manage-
ment (available from AAAI Press at www.aaai.org).

Firby, R. J. 1987. An investigation into reactive plan-
ning in complex domains. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI).

Firby, R. J. 1989. Adaptive Execution in Complex
Dynamic Worlds. Ph.D. Dissertation, Yale University.

Fitzgerald, W.; Firby, R. J.; Phillips, A.; and Kairys,
J. 2006. Complex event pattern recognition for
long-term system monitoring. In Proceedings of the
AAAI 2003 Spring Symposium on Human Interaction
with Autonomous Systems in Complex Environments
(available from AAAI Press at www.aaai.org.

Freed, M. 1998. Managing multiple tasks in complex,
dynamic environments. In Proceedings of the 1998 Na-
tional Conference on Artificial Intelligence.

Georgeff, M. P., and Ingrand, F. F. 1989. Decision-
making in an embedded reasoning system. In Interna-
tional Joint Conference on Artificial Intelligence, 972–
978.

Georgeff, M., and Lansky, A. 1986. Procedural knowl-
edge. IEEE Special Issue on Knowledge Representa-
tion 74(1):1383–1398.

Korth, D., and LeBlanc, T. 2002. International space
station alpha operations planning. In Proceedings of
the 3rd International NASA Workshop on Planning
and Scheduling for Space (available from The Insti-
tute for Advanced Interdisciplinary Research Houston
Texas).

Nilsson, N. J. 1994. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research
1(1).

Ram, A.; Catrambone, R.; Guzdial, M. J.; Kehoe,
C. M.; McCrickard, D. S.; and Stasko, J. T. 1998.
Pml: Representing procedural domains for multime-
dia presentations. Technical Report GIT-GVU-98-20,
College of Computing, Georgia Institute of Technol-
ogy.

Schoppers, M. 1987. Universal plans for reactive
robots in unpredictable environments. In Proceedings
of the International Joint Conferences on Artificial In-
telligence (IJCAI).

Schreckenghost, D.; Thronesbery, C.; Bonasso, P.; Ko-
rtenkamp, D.; and Martin, C. 2002. Intelligent con-
trol of life support for space missions. IEEE Intelligent
Systems 17(5).

Schreckenghost, D. 1999. Checklists for human-robot
collaboration during space operations. In Proceedings
of the Human Factors and Ergonomics Society Annual
Meeting.

Simmons, R., and Apfelbaum, D. 1998. A task de-
scription language for robot control. In Proceedings
Conference on Intelligent Robotics and Systems.

Verma, V.; Jonsson, A.; Pasareanu, C.; Simmons, R.;
and Tso, K. 2005. Plan execution interchange lan-
guage (PLEXIL) for executable plans and command
sequences. In Proceedings of the International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS).


