
In-Situ Domain Modeling with Fact Routes ∗

Daniel Bryce
SIFT, LLC.

dbryce@sift.net

Pete Bonasso
Traclabs, Inc.

bonasso@traclabs.com

Khalid Adil
Traclabs, Inc.

khalid@traclabs.com

Scott Bell
Traclabs, Inc.

scott@traclabs.com

David Kortenkamp
Traclabs, Inc.

korten@traclabs.com

Abstract

Engineering plans and the domain models that underly
them is a significant challenge. Research on knowledge
engineering for planning has developed many ways to
produce both plans and domain models, but most work
treats these as separate tasks. We propose that it is
more natural to combine plan synthesis with domain
modeling. We describe a new planning and modeling
tool, called Conductor, that is based upon represent-
ing plan steps and fact routes. Conductor uses a vi-
sualization metaphor derived from metro maps to dis-
play facts as transit routes and step preconditions as
stations. The visualization helps quickly convey how
a plan modifies the state and appeals to the metro
metaphor to support user engagement in modeling.

Introduction
Developing plan authoring tools is a challenge. Provid-
ing support beyond the level of a text-editor requires
some form of domain model that describes the seman-
tics of steps. However, acquiring and maintaining the
domain model often requires an expert. Users may
not have access to such modeling experts, but typically
have a suitable understanding of the task, the steps to
achieve it, and the relevant state variables. Users need
tools that can easily accept their knowledge and provide
planning support based upon that knowledge.

We present Conductor, a visual planning tool that
enables users to add, remove, and rearrange steps, as
well as annotate the plan with their knowledge about
the state of the world. We propose a new form of do-
main model knowledge called a fact route that specifies
a fact’s life cycle. Conductor uses the visual metaphor
of a metro map (Figure 1) to treat state facts as tran-
sit routes, and how facts interact with steps as sta-
tions. Fact routes are conceptually simple and they
provide useful, but incomplete, information about the
domain model. For example, a fact route of the form

ai
p:(ak,...,al)−−−−−−−→ aj states that the fact p is true between

steps ai and aj , and is used by ak, . . . , al as a precon-
dition. The fact route reveals that ai adds p, aj deletes

∗This work was conducted under NASA contract
NNX15CA19c.

p, no step between ai and aj deletes p, and that p is a
precondition of ak, . . . , al. The fact route fails to state
whether any other step between ai and aj also adds p.
It also allows the user to omit steps that use p as a pre-
condition. In this way, a fact route is a bundle of causal
links (but it is not clear which causal links). Explicitly
stating the causal links or the precondition, adds, and
deletes would be more informative, but at the cost of
usability and the peril of user error.

Conductor uses the Marshal model maintenance sys-
tem (Bryce, Benton, and Boldt 2016) to reason about
the incompletely specified domain model. Marshal
treats the fact routes as observations of the incom-
plete model, and develops possible interpretations of
the model that are consistent with them. Conductor
presents Marshal’s interpretations so that the user can
optionally dispel incompleteness and correct errors.

Modeling fact routes appeals to a user’s intuition
about how facts persist over time without necessarily
requiring that they encode how the fact is related to
each step. Presenting only the impactful model omis-
sions and errors helps keep the user on task without re-
quiring a complete and correct model. Conductor and
Marshal help ensure that the plan is internally consis-
tent given the information provided by the user.

Conductor is different than contemporary planning
tools because it focusses on acquiring the aspects of
the domain model that are most natural for users to
express. Conductor does not require a complete and
correct domain model, but is able to structure interac-
tions with a user so that it can acquire one. In contrast
with prior works that treat modeling and planning as
distinct activities, Conductor takes a least-commitment
approach to modeling that is more accessible to non-
experts.

In the following, we discuss background on incom-
plete models, describe fact routes and how they inform
the planning model, and present Conductor’s interface
and interaction modalities. We then explain how Mar-
shal provides Conductor the interpretations of an in-
complete model and how Conductor elicits model re-
finements. We end with a discussion of related work
and a conclusion.

Figure 1: Manhattan Metro Map

Figure 2: Conductor Fact Routes

Example Plan

We illustrate Conductor with an example plan to brew
a cup of coffee using the AeropressTMbrewer (Figure 3).
Figure 2 illustrates the plan in Conductor, where each
step aside from the “Initial State” and “Goal” steps
are provided with the instructions for the brewer. The
figure also illustrates the fact routes added by a Con-
ductor user. The plan involves placing the brewer on a
cup, adding coffee and water, waiting for the coffee to
brew, stirring the coffee, and then plunging to extract
the coffee (as shown in Figure 3).

Figure 3: Aeropress Coffee Brewer

Background

As a user creates a plan and annotates it with fact
routes in Conductor, Marshal is able to develop inter-
pretations of the domain model and critiques of the
plan. In the following, we define plans, domain models,
fact routes, and open conditions.

Plans: A plan π is a sequence of actions (a1, . . . , an).
For convenience, we assume that the initial state and
goal are represented by actions a0 and an+1.

Domain Model: We represent the domain model with
a grounded (propositional) STRIPS model M . The
grounded STRIPS planning model M defines the tuple
(P,A), where P is a set of state propositions (facts), and
A is a set of actions. Each action a ∈ A defines the tuple
(pre(a), add(a), del(a)), where each element of the tuple
is a subset of P . Marshal (and Conductor, by proxy)
may never fully represent the domain model. Marshal
maintains knowledge about the model, and each inter-
pretation of this knowledge corresponds to a different
model M .

Fact Route: A fact route ai
p:(ak,...,al)−−−−−−−→ aj , corre-

sponds to the case where p originates in ai, terminates
in aj , and visits steps ak, . . . , al (also called stations).
Originating in a step corresponds to the step adding
the fact. Terminating in a step either corresponds to
the step deleting the fact, or that the step is the goal
step. Visiting a step corresponds to the step requiring
the fact as a precondition. A fact route is legal for a
plan π if in the plan: ai precedes aj , and each ak, . . . , al
succeeds ai and either precedes aj or is aj . Conductor
enforces that the user creates only legal fact routes.

Open Condition: An open condition (ai, p) denotes
that p is a precondition of a, p ∈ pre(a), and p is not
true prior to executing ai. An open condition occurs
if no prior action adds p, or some action at before ai
deletes p and no third action between at and ai adds p.

Figure 4: Conductor displays how each fact originates,
is used as a precondition, and terminates.

Conductor
Conductor allows the user to perform several modifica-
tions to a plan, including adding and removing steps or
fact routes. These modifications inform Marshal about
the domain model and help it develop its interpreta-
tions. Marshal then develops a set of open conditions
affecting the plan and notifies the user via Conductor.
In this section, we describe how a user can interact with
Conductor.
Overview: Conductor displays a plan as a sequence of
steps (white boxes) that start at the top and proceed to
the bottom. Figure 4 illustrates an optional view that
provides the details of each fact route. For example, it
illustrates the following fact routes (among others):

Add Coffee
Grounds in Place:(Wait)−−−−−−−−−−−−−−−→Wait

Add Water
Water in Place:(Wait)−−−−−−−−−−−−−−→Wait

Wait
Brewed:(Plunge)−−−−−−−−−−→ Plunge

The plan view on the left of the figure illustrates the
fact routes by the vertical colored lines. Each fact route
flows from the bottom of the originating step to the top
of the destination step. Each step visited by the fact
route includes a blue semi-circle station on the top of
the step that is overlaid on the route. For example, the
“Grounds in Place” fact route is shown as the second
fact route from the left in orange-red.

Figure 5: Users add steps to Conductor and can edit
their details. The details panel allows users to change
the step name, and the fact routes impacting or im-
pacted by the step.

The side panel also shows a list of fact routes for
facts, including the step where they originate (dot with
line at bottom), visit a station (blue text), do not visit
a station (grey text), and where they terminate (dot
with line at top). We use the terminology “terminate”
to capture both the case where a fact becomes false (is
deleted) or reaches the goal.

Adding and Editing a Step: Figure 5 illustrates
a procedure after the user has elected to add a step,
initially titled “New Step”, between “Add Coffee” and
“Add Water”. The edit step panel to the right allows
the user to modify the details of the step, such as the
step name, and facts relevant to it. Because the facts
“Brewer in Place” and “Grounds in Place” correspond
to fact routes crossing the new step, they are listed as
relevant facts. We discuss modifying the fact routes
below. When the user adds a step to a plan π (trans-
forming it to π′, Conductor generates an observation
(π, π′) for Marshal.

Removing a Step: Figure 6 illustrates a plan before
and after removing the “Place Brewer on Cup” step.
There was previously a fact route from this step to the
Goal, that visited several intermediate steps. When
the user removes a step in plan π (transforming it to
π′, Conductor generates an observation (π, π′) for Mar-

Figure 6: Users can remove steps in Conductor, which can disrupt the fact routes. The left illustrates the procedure
before removing the “Place Brewer on Cup” step and the right illustrates after. Marshal computes the impact on
the fact routes and marks any open conditions in red.

shal. In response, Marshal recomputes the fact routes
and open conditions. Each of the steps with a red sta-
tion denoting that it requires the fact as a precondition,
now has an open condition. The image on the right il-
lustrates each open condition as a red semi-circle on the
corresponding step.
Adding, Editing, and Removing an Fact Route:
Figure 7 illustrates adding a fact route to a procedure.
For example, the user adds the fact route:

Add Water
Water in Place:(Wait)−−−−−−−−−−−−−−→Wait

The left-most image illustrates the plan prior to adding
the fact route, and after the user clicks the edit (pencil
icon) on the “Add Water” step and adding a new fact
(clicking the blue “+” icon, and entering the name of
the fact). By default, facts added to a step in this
fashion originate in the step (as denoted by the circle
with a line at the bottom next to the “Water in Place”
fact) and terminate at the specified endpoint. Next, the
user must edit the “Wait” step (right-side of the figure),
where the “Water in Place” fact has been automatically
populated in the fact list as an end point (denoted by
the circle with a line at the top). The user clicks the
precondition checkbox to state that its a precondition
of the step. The user can optionally remove a fact route
as well by clicking the trash can in the fact view. When

the user adds a fact route of the form ai
p:(ak,...,al)−−−−−−−→

aj , Conductor generates an observation (ai
p:(ak,...,al)−−−−−−−→

aj , true) for Marshal. Similarly, removing a fact route

results in an observation (ai
p:(ak,...,al)−−−−−−−→ aj , false) for

Marshal. Fact route edits are described by a pair of
observations that correspond to removing the prior fact
route and adding the new fact route.

Labeling an Open Condition: Figure 8 illustrates a
case where a user addresses open conditions. The user
may either dismiss the open condition (clicking the red
“?” button and selecting ignore), meaning that it is not
a precondition of the step, or establish a fact route that
satisfies the open condition. When user dismisses the
open condition it results in an observation to Marshal
of the form ((ai, p), false). Otherwise, modifying a fact
route results in the fact route observations described
above.

Possible Model Features: Figure 9 illustrates pos-
sible modifications to the domain model identified by
Marshal. The left-most image illustrates a case where
Marshal has identified several possible open conditions,
denoted by the blue striped pattern over the possible
stations and the blue “?” in the step details panel.
Clicking the “?” will allow the user to confirm or deny

Figure 7: Users can add fact routes of the form ai
p:(ak,...,al)−−−−−−−→ aj in Conductor by adding a fact to a step (left, before,

and center, after), and then terminating the route and adding stations (right).

the existence of the stations and it will result in ei-
ther an open condition (red station) or removal of the
station. The center image illustrates that Marshal has
identified a possible add effect for the initial state step,
along with the stations (as before). The possible add ef-
fect means that there is a possible fact route originating
in the initial state, and the striped fill on the route high-
lights that it is hypothesized by Marshal. The right-
most image illustrates how Conductor communicates
that Marshal hypothesizes that “Add Coffee” deletes
(is the terminus) of the “Brewer In Place” fact route
originating at the initial state. The fact route is first
solid and then has a striped fill to indicate that it may
continue or not, depending on the hypothesized delete
effect.

Marshal
Marshal observes modifications to the plan and fact
routes, updates its interpretations of the domain model,
and then notifies Conductor of any new fact routes and
plan flaws. The observations are as follows:

• (π, π′): a plan π and its modification π′.

• (ai
p:(ak,...,al)−−−−−−−→ aj , `): a fact route with truth label

` ∈ {true, false}.
• ((ai, p), `): an open condition for fact p at action ai

with truth label `.

Marshal processes these observations to update its in-
terpretations of the domain model. For each plan mod-
ification (π, π′), where π′ adds an action to, or removes
an action from π, Marshal develops explanations of the
change. For example, adding an action ai to π can be
explained by ai adding a fact p, which is an open con-
dition in the plan. This translates into modifying the
model interpretations to capture that ai adds p.

Similarly, observing a fact route (ai
p:(ak,...,al)−−−−−−−→

aj , true) will cause Marshal to explain the fact route
and modify its interpretations of the model. One pos-
sible explanation is that action ai adds fact p, actions
ak, . . . , al use p as a precondition, and action aj deletes
p.

Observing a label for an open condition is handled
in a similar fashion. Explanations for open conditions
relate to how the condition is established or is not a
precondition.

After updating its interpretations, Marshal notifies
Conductor of fact routes, open conditions, and threats
that it identifies given its knowledge of the domain
model. With respect to a plan π and its knowledge
about the domain model, Marshal provides the follow-
ing forms of feedback to Conductor:

• ai
p:(ak,...,al)−−−−−−−→ aj a fact route exists for fact p from

action ai to aj .

• (ai, p) an open condition exists for fact p at action
ai.

Marshal generates this feedback by simulating execu-
tion of the plan under its domain model interpretations.
From each possible execution, Marshal estimates the
probability and entropy of each fact route, open condi-
tion, and threat. Marshal applies a user defined mini-
mum threshold to determine which it reports. Marshal
reports those exceeding the threshold for probability as
“known” and those for entropy as “possible”. Conduc-
tor displays both forms of knowledge, as described in
the previous section.

EVA 22 Scenario
We also developed a procedure in Conductor for an
NASA Extravehicular Activity (EVA) procedure. The

Figure 8: Users can address open conditions identified
by Marshal in two ways. The user either establishes the
conditions by adding fact routes, or clicks the red “!”
button next to the fact to acknowledge or dismiss the
open condition.

procedure, called EVA 22, involves two astronaut roles
EV1 and EV2, and we illustrate a portion of the pro-
cedure for EV1 in Conductor. Figure 10 illustrates a
portion of the procedure in PRIDE View with fully de-
tailed instructions for each step. Figure 11 illustrates
the annotated steps for EV1 in Conductor. The figure
shows the first and last halves of the procedure side-by-
side. There are a number of fact routes in the proce-
dure. For example, the fact routes in Table 1 appear in
Figure 11.

The fact spare-SGTRC-installed-at-worksite is true
between steps SGTRC R&R / MISSE 8 Retrieval and
Cleanup, and is required as a precondition to steps
STBD Radiator Grapple Bar Install and Cleanup. It is
an example of a fact that becomes true and later false as
the procedure executes. The fact ev1-has-PGT is true
throughout the whole procedure, and is a precondition
of the Setup and SGTRC R&R / MISSE 8 Retrieval
steps. Noting such invariants is useful in developing
libraries of procedures because the requirements that
must be satisfied to run the procedure are explicit.

Related Work

itSimple (Vaquero et al. 2013) is a knowledge engineer-
ing tool for planning that allows both domain model
creation and plan authoring. itSimple focusses primar-
ily on complete and correct domain modeling so that it
can then task an automated planner to generate a plan.
Conductor and Marshal focus more on semi-automated
plan authoring with semi-automated domain author-
ing. Conductor aims at a more novice user audience,
whereas itSimple at improving the productivity of ex-
perts.

NASA has a long history of developing plan author-
ing tools, which includes tools such as Mapgen (Ai-
Chang et al. 2004) and, more recently, OpenSPIFe
(Aghevli, Bencomo, and McCurdy). Both Mapgen and
OpenSPIFe support automated planning and constraint
checking, but require a complete domain model. They
allow a restricted form of integrated authoring and do-
main modeling wherein users may relax constraints.
Conductor also allows users to relax the domain model
(e.g., remove open conditions), but goes further by help-
ing them add to the model. While Conductor deals with
a much simpler class of domain models, it can, in prin-
ciple, support richer domain models (e.g., temporal and
resource constraints).

ReACT! (Dogmus, Erdem, and Patoglu 2015) is sim-
ilar to Conductor, in that it helps users encode the
semantics of operators. It differs in that it focusses
on complete specification of preconditions and effects,
where Conductor allows some ambiguity in favor of
simplicity. ReACT! also handles more expressive hy-
brid models, where Conductor and Marshal focus upon
STRIPS.

Conductor and Marshal address a problem similar to
that of KEWI (Wickler, Chrpa, and McCluskey 2014).
User-friendly environments for encoding model knowl-
edge by domain experts can help make planning acces-
sible. KEWI differs from our work in that it requires
users to be more formal in the knowledge that they en-
code, structuring it around an ontology. We see this as
a trade-off in user skill and knowledge engineering tool
support. Conductor and Marshal require comparatively
little structure.

The Procedure Integrated Development Environment
(PRIDE) (Kortenkamp et al. 2008) permits users to
develop procedures in a palette-based drag-and-drop
interface. While PRIDE allows much more detailed
procedures than the types of plans developed in Con-
ductor, it does not provide the same type of user sup-
port. PRIDE automates aspects of the procedure de-
velopment by using PDDL models (Bonasso and Boddy
2010), but like many of the aforementioned tools it sep-
arates domain modeling and procedure authoring. We
are developing Conductor as tool within the PRIDE
suite that can help users design consistent procedures
at a high-level, and then use PRIDE to fill in the details
necessary for execution.

Figure 9: Users can address possible domain model features identified by Marshal similar to addressing open condi-
tions. Users can modify fact routes to match Marshal’s suggested updates, or dismiss them.

Initial State
failed-SGTRC-installed-at-worksite:(SGTRC R&R / MISSE 8 Retrieval,Remove failed SGTRC)−−→ Remove failed

SGTRC
SGTRC R&R /
MISSE 8 Retrieval

spare-SGTRC-installed-at-worksite:(STBD Radiator Grapple Bar Install,Cleanup)−−→ Cleanup

Initial State
ev1-has-PGT:(Setup,SGTRC R&R / MISSE 8 Retrieval)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Goal

Table 1: Fact routes for EV1 procedure in Figure 11.

Conclusion & Future Work

We present a new plan authoring tool called Conductor.
Conductor enables novice users to author plans and an-
notate them with a new form of knowledge called a fact
route. Fact routes are easy to specify and are very infor-
mative, yet incomplete. Conductor helps overcome the
incompleteness by interacting with the Marshal model
maintenance system to develop possible interpretations
of the model. Using these interpretations, Conductor is
able to elicit refinements to the model that could impact
the plan. By seamlessly integrating plan authoring and
domain modeling, Conductor and Marshal allow novice
users to quickly begin authoring plans without a steep
learning curve.

While it is possible to extend Marshal to more expres-
sive planning formalisms, such as temporal or hybrid
planning, it is not immediately obvious how to extend
Conductor. The metro map metaphor should accomo-
date temporal actions, and will more closely resemble a
Gantt chart. Fact routes may extend to hybrid models
if they are reinterpreted as resource envelopes, but we
may lose some of the clarity inherent to boolean vari-
ables.

References

Aghevli, A.; Bencomo, A.; and McCurdy, M. Schedul-
ing and planning interface for exploration (spife).

ICAPS 2011 54.

Ai-Chang, M.; Bresina, J. L.; Charest, L.; Chase, A.;
Hsu, J. C.; Jónsson, A. K.; Kanefsky, B.; Morris, P. H.;
Rajan, K.; Yglesias, J.; Chafin, B. G.; Dias, W. C.;
and Maldague, P. F. 2004. MAPGEN: mixed-initiative
planning and scheduling for the mars exploration rover
mission. IEEE Intelligent Systems 19(1):8–12.

Bonasso, P., and Boddy, M. 2010. Eliciting planning
information from subject matter experts. KEPS 2010
5.

Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Main-
taining evolving domain models. In Kambhampati,
S., ed., Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, 3053–3059. IJ-
CAI/AAAI Press.

Dogmus, Z.; Erdem, E.; and Patoglu, V. 2015. Re-
act!: An interactive educational tool for AI planning
for robotics. IEEE Trans. Education 58(1):15–24.

Kortenkamp, D.; Bonasso, R. P.; Schreckenghost, D.;
Dalal, K.; Verma, V.; and Wang, L. 2008. A procedure
representation language for human spaceflight opera-
tions. In Proceedings of the 9th International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS-08).

Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck,

Figure 10: EVA 22 procedure for EV1 represented in PRIDE.

J. C. 2013. itsimple: towards an integrated design
system for real planning applications. Knowledge Eng.
Review 28(2):215–230.

Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014.
KEWI - A knowledge engineering tool for modelling AI
planning tasks. In Filipe, J.; Dietz, J. L. G.; and Aveiro,
D., eds., KEOD 2014 - Proceedings of the International
Conference on Knowledge Engineering and Ontology
Development, Rome, Italy, 21-24 October, 2014, 36–47.
SciTePress.

Figure 11: Portion of EV1 steps for EVA 22 represented
in Conductor.

