
© 2020 Sierra Nevada Corporation

Integrated Mission Operation Concepts for the Dream
Chaser® Cargo System

SpaceOps

May 2021

Jason Gabbert – Sierra Nevada Corporation

Madeline Devereaux – Sierra Nevada Corporation

Jeremy Owen – Sierra Nevada Corporation

David Kortenkamp – TRACLabs Inc.

Scott Bell – TRACLabs Inc.

Gilles Kbidy – L3Harris

David Kortenkamp2
To appear in 16th International Conference on Space Operations (SpaceOps 2020)

© 2020 Sierra Nevada Corporation

Introduction
Schedules, procedures, commands, and telemetry are at the heart of operating complex spacecraft.

Schedules dictate when to do something, procedures tell operators how to do it, and the command and telemetry
system enables both. In many space operations, procedures and schedules are stove-piped with little or no
information exchanged between largely manual systems.

 In the work presented in this paper, procedures, schedules, real-time telemetry, and commanding are
integrated using modern distributed computation approaches and commercial off-the-shelf (COTS) solutions with
the result applied to Sierra Nevada Corporation’s Dream Chaser® spaceplane operations servicing NASA’s
International Space Station (ISS) in support of the Cargo Resupply Services 2 (CRS2) contract.

The system consists of an electronic procedure system which connects directly to a web-based scheduling
system, as well as spacecraft telemetry and commands. The scheduling system can initiate procedures and track their
status. Operators developing schedules have electronic access to all procedures with estimated durations based on
prior execution. These interfaces are provided by web-based technologies such as REST and JSON. Operator
interfaces to the schedule and electronic procedures are also web-based, which allows for simultaneous sharing of
information across all operators and access from any device with a web-browser. The result is more efficient
operations with less manual labor overhead and fewer errors.

This paper will present the motivation, an overview of the technologies, how each is integrated, and

describe the integrated use case.

Traditional Space Operations Tools
The authors have experience operating several spacecraft in multiple organizations ranging from very large,

well-funded programs like ISS and Space Shuttle, to university space programs working with minimal resources and
staff. Some common themes persist across these programs and organizations and are likely common to spacecraft
operations.

To date, each organization has independently developed their own suite of tools over time to support the
following functions:

● Planning and scheduling
● Constraint checking
● Commanding tools and products
● Spacecraft and operational procedures
● Real-time telemetry display
● Historical telemetry analysis

These tools are often designed in-house at great cost and lengthy development times and sometimes in isolation

from one another, resulting in unique interfaces to be mastered and requiring manual correlation between products
and command and telemetry systems. On satellite programs, scheduling tools are commonly used more for mission
planning than real-time execution and status tracking. There has also been no linkage of command timing or current
telemetry values to human-centric procedures. Operators regularly end up relying on paper-based procedures to
make product review and execution easier; however, these products become nearly impossible to sort and search for
as-run notes as the scale of operations grows. Finally, consistent formatting of products has been manually enforced,
requiring additional labor to maintain. Due to the high costs and development time associated, these highly-

© 2020 Sierra Nevada Corporation

integrated tool suites are typically reserved only the largest of space operators; therefore, a fully integrated, easy to
learn, commercially available system attainable by most space operators was sought.

Dream Chaser
Sierra Nevada Corporation’s (SNC) Space Systems Group is leading an effort to create a low-cost space

system to support the transport of cargo to and from low-Earth orbit, including the ISS. This effort called the Dream
Chaser® Program is focused on the development of the Dream Chaser Cargo System.

The Dream Chaser Cargo System consists of the uncrewed Dream Chaser and Cargo Module (CM). The
Dream Chaser is a reusable, autonomous, lifting-body spacecraft that launches vertically on top of a launch vehicle
and lands horizontally on a conventional runway. The CM is an expendable module that attaches to Dream Chaser
serving as a platform for solar arrays and thermal radiators and carries pressurized and unpressurized cargo. The CM
is jettisoned for atmospheric burnup prior to Dream Chaser entry.

Figure 1. - Dream Chaser CRS2 Mission Overview

Launching inside a standard payload fairing requires the wings and solar arrays to be folded for launch and

deployed once on orbit. Following a series of checkouts, the Dream Chaser rendezvous with the ISS where it is
captured by the ISS robotic arm and berthed to one of the ISS nodes. The ISS crew then ingresses the vehicle and
exchanges cargo and payloads. External, unpressurized cargo is transferred using the ISS robotic arm. Once the
berthed mission is complete, the Dream Chaser is unberthed and released from the ISS and prepares for entry,
descent and landing. The Dream Chaser executes this phase autonomously after the authority to proceed is provided
by the flight controller team, landing at the Shuttle Landing Facility (SLF) runway at NASA’s Kennedy Space
Center. Ground crews then retrieve the payloads from the Dream Chaser and quickly return them to the scientific
teams.

As a commercial aerospace program, SNC has extra incentive to develop tools that enable streamlined

operations, keeping labor requirements and overhead costs to a minimum. The SNC Space Systems team recognized

© 2020 Sierra Nevada Corporation

mission planning and execution for the Dream Chaser Cargo System spacecraft presented both unique challenges
and great opportunities to rethink and improve upon the traditional operations concepts.

OnTime
The OnTime scheduling platform was created to provide a web-based, distributed, and collaborative

planning and scheduling solution for the Dream Chaser mission, capable of real-time integration with the procedure
execution and command and control (C2) systems.

Running in the cloud or on premises, OnTime lets operators and planners coordinate activities for multiple
vehicles (Dream Chaser, ISS), optimize communication paths across dedicated or shared data links, evaluate
resource availability, and coordinate ground staff activities at multiple locations. The application is typically
deployed as a set of instances configured for sandbox development, training, mission simulation planning and
execution, and most importantly real-time mission planning and execution. OnTime instances can be one of three
types: planning, live, and playback. A planning instance allows collaborative creation and editing of multiple
timelines. It also includes activity templates and rules to standardize scheduling across multiple timelines. A live
instance allows real-time execution and statusing of executing activities. The playback instance allows real-time or
accelerated replay of archived as-run timelines. Timelines are captured as JSON documents which can easily be
exchanged from one platform or instance to another. In addition, a built-in dynamic publishing capability allows
planners to easily “push” changes between instances as needed (for regular publishing of approved timelines,
contingency operations, or just-in-time updates).

Key differentiators for the Dream Chaser mission include: 1) ability to perform concurrent editing on

shared timelines from distributed locations (“Google docs for timelines”), 2) live integration with procedure and C2
systems, 3) near real-time constraint checking, conflict resolution and use of planning AI algorithms to optimize
scheduling allocations.

PRIDE
The PRIDE electronic procedure platform represents standard operating procedures as an eXtensible

Markup Language (XML) file that can both be displayed to an end user in a web page and be executed by an
autonomous system. The XML representation, called the Procedure Representation Language (PRL), was derived
from and augments the NASA International Space Station (ISS) International Procedure Viewer (IPV)
representation.

The PRIDE electronic procedure platform consists of several key components: 1) a drag-and-drop

procedure authoring tool; 2) a web-based procedure viewer; and 3) a procedure executive for automation. PRIDE
stores all procedure interactions, whether by operators or automation, in a SQL database for auditing and analytics.
Thus, after the PRIDE system has been running significant amounts of data will be available with respect to what
procedures were run, how long they took, whether they were successful or not, and which vehicle did what
procedures when.

PRIDE has a REST Application Programmers Interface (API) to provide information such as procedure

content and status. The API can be used to provide a list of available procedures, which can be then used when
creating OnTime activities and can provide a unique URL to each procedure (the static procedure link). The API can

© 2020 Sierra Nevada Corporation

also be used to start any procedure either in manual or automated mode. Once a procedure is started, the API can be
used to get a unique URL to that particular instance of the running procedure (the dynamic procedure link). OnTime
can then replace the static link with the dynamic link after the procedure has started so that any operator clicking on
the dynamic link will join the running procedure. The API can also provide an update as to the execution status of
the running procedure, including percentage complete (based on number of instructions), estimated time to complete
(based on prior history), and current status (running, failed, paused, finished, aborted).

InControl
The C2 system selected for Dream Chaser Cargo System is based on the InControl product which was also

enhanced to provide a REST API to easily integrate with PRIDE and OnTime. Vehicle operations requiring specific
procedures and commands can be planned in OnTime, executed as discrete steps in PRIDE and seamlessly injected
in the C2 system to execute pre-checked command sequences. The execution status is then returned to PRIDE
including telemetry values and overall procedure execution status can be tracked in OnTime at a very high-level.

Using loosely coupled interfaces and modern data-centric technologies was crucial early on in the project to
quickly integrate the tools (less than a day in each case for proof-of-concept) and validate the overall technical
approach. The next section provides insights into the data architecture and lessons learned along the way.

Integrated Architecture
The three applications (OnTime, PRIDE and InControl) are installed, managed and configured

independently. They each have their own persistent storage layer and software Graphical User Interfaces. This level
of independence provides a very flexible solution for mission planners, procedure developers and spacecraft
operators, who can all work in parallel and release new work products in each tool as they become available.

The integration and automation aspect is achieved using loosely coupled REST APIs, combining typical
request-response and polling patterns. All three tools were inherently designed with this ability. As soon as a new
spacecraft command script is available, it is automatically added to PRIDE and can be used in existing or new
procedures. Similarly, as soon as new PRIDE procedures become available, they are automatically added to OnTime
and can be used in existing or new mission plans. The data sent back and forth over REST is formatted in JSON,
which is a natural fit for loose coupling. The architecture diagram below illustrates the loose coupling concept and
the independence of the three applications.

© 2020 Sierra Nevada Corporation

Figure 2: Application Interface Architecture

The benefits of such an approach (REST API and JSON) include:

1. Ability to change an existing REST API endpoint without breaking existing API consumers. Of course,
API designers must use caution and only augment the API with additional, optional arguments. This
approach works extremely well and lets different vendors or providers release new versions of the API
safely, without breaking existing interfaces

2. Using JSON also provides a means to easily augment content without breaking existing consumers.
Additional key-value pairs (including complex data types such as arrays and embedded objects) can safely
be added to the API.

The development team observed a huge productivity increase compared to a more traditional approach. On

previous programs, it was often necessary to rely on interfaces based on CORBA, SOAP, RMI or other more rigid,
tightly coupled definitions. The scope of such an integration would have typically taken multiple weeks. Using
REST and JSON, the team was able to drastically reduce integration time and achieve full automation within a few
days.

Mission Planning and Scheduling
Mission planning begins with scheduling activities across a pre-defined timeframe to meet various resource

and vehicle constraints. The pre-mission part of the planning cycle involves creating and maintaining a full mission
timeline as mission needs and procedures are defined. During mission execution, sections of the timeline are
regularly refined and updated with the latest resource schedules, procedures, and results from previously executed
activities. Figure 3 shows the web-based OnTime planning view where users schedule activities and events on a
timeline from pre-defined templates or as one-off items. Items are added using the navigation & edit toolbar and
assigned groups that are organized as rows on the timeline. Resources such as communications schedules and
trajectory information such as orbit events are imported into an OnTime timeline from a JSON or CSV file. Using
AI scheduling scripts, activity placement can also be automated and optimized based on user-defined rules. As items
are added to a timeline, real-time constraint checking is performed and reported in the Constraint Summary.
Constraints are then resolved or acknowledged as an exception.

© 2020 Sierra Nevada Corporation

Figure 3: Planning View

 Timelines are stored in a fault tolerant and shared database for access across various instances. Once a
timeline is approved and ready for execution, part or all of the timeline is published to a live instance where the
REST interface allows procedures to autonomously or manually execute. The application can be configured to run
multiple instances to support all phases of the mission: planning, simulation (with simulated and accelerated time),
live execution, and playback (for post-mortem analysis if desired).

Authoring Procedures
Activities in the timeline are tied to a PRIDE procedure. A PRIDE procedure can contain the following

types of information:

● Meta-data that describe aspects of the procedure such as title, author, revision, etc.
● Steps that group activities into sub tasks
● Text instructions that describe actions (these are not able to be automatically executed)
● Command instructions that are passed to the system
● Verify instructions that test sensor data coming from the system
● Wait instructions that pause for either a period of time or until a particular expression evaluates to true
● Record instructions that take input from operators or sensors
● Calculate instructions that perform mathematical computations on recorded data
● GoTo instructions that branch actions to a specific step
● Conditional blocks that branch actions after evaluation of a true or false expression

© 2020 Sierra Nevada Corporation

● Choice blocks that branch actions after evaluation of an expression with multiple answers
● Call procedure instruction that activates a second (or child) procedure
● Informational statements such as figures, lists, tables, warnings, cautions, and notes

By combining the above elements, procedures can be written to perform a variety of tasks that can include
both manual (human) and automated steps. These elements are defined in an XML schema called the Procedure
Representation Language (PRL) [Kortenkamp et al 2007; Kortenkamp et al 2008].

TRACLabs has developed a desktop authoring system for creating procedures using an easy drag-and-drop
interface (see Figure 4). The authoring tool connects to a procedure repository that stores all versions of a procedure
and is displayed as a procedure directory. Various procedure elements are available in a palette for use in a
procedure. The procedure author can drag-and-drop these elements onto the procedure pane. PRIDE Author also
connects to a system representation so that the procedure can reference system telemetry and commands. Details of
each procedure element can be set in the properties pane. PRIDE Author hides the complexity of the PRL XML
representation from the procedure creator [Izygon et al 2008].

Figure 4: PRIDE Author

© 2020 Sierra Nevada Corporation

Real-time Execution
During real-time execution, flight controllers start with the schedule using OnTime to determine when to

execute procedures manually or verify the completion of autonomously initiated procedures. Similar to planning,
multiple operators can access the executing timeline, start procedures, and status activities. Operators can start
manual activities by selecting the procedure link from the activity on the timeline. For autonomous activities, the
procedure opens and starts execution as soon as the current time bar crosses the start of a scheduled activity as
shown in Figure 5 below.

Figure 5: Autonomous Activity Execution from OnTime

The procedure opens in a browser-based interface that is shown in Figure 6. The browser connects to a

PRIDE View server to retrieve an HTML version of the procedure and any actions taken by the operator are
collected by the server and stored in a SQL database. The PRIDE View interface allows an operator to both
complete procedure instructions manually or to supervise and control automated procedure execution. The interface
marks the current step and indicates those steps that have already been completed and those that still remain. Live
telemetry from the spacecraft is displayed in-line with procedure instructions. The PRIDE View interface also
provides search mechanisms for operators to find appropriate procedures and start them independent of the timeline,
if needed.

© 2020 Sierra Nevada Corporation

Figure 6: PRIDE View

While a procedure is being executed, OnTime receives the procedure status and indicates the status on the

timeline by changing the activity color and showing a progress bar. Procedure status can either be in progress,
completed, or aborted. Examples of completed activities are shown as green in Figure 7.

Figure 7: Procedure Status in OnTime

TRACLabs has also developed an executive called the Procedure Agent for eXecution (PAX) that can read

the procedure XML file and execute it by issuing commands to a system and reasoning about telemetry from a
system [Bell and Kortenkamp, 2011; Schreckenghost et al 2015; Schreckenghost et al 2018]. PAX operates on the
same XML file that is displayed to an operator. Any actions taken by PAX are displayed to any operator viewing
that procedure. PAX pauses on any parts of the procedure that require operator interaction. PAX can run without
operator supervision if desired, although any instructions requiring operator interaction are pending indefinitely.
Procedure authors and procedure operators can designate any instruction as requiring operator execution and this is
respected by PAX as well.

Post Activity
PRIDE stores all procedure interactions, whether by operators or automation, in a SQL database for

auditing and analytics. Thus, after the PRIDE system has been running, significant amounts of data become
available regarding which procedures were run, execution duration, whether they were successful or not, and what

© 2020 Sierra Nevada Corporation

vehicle did what procedures when. This information is available to data analytics tools that could be used to improve
the efficiencies of the entire system or to influence mission plans. PRIDE has an API to retrieve this information.
Some simple algorithms have been implemented to calculate, for example, the expected duration of a procedure
based on information in the as-run database. The Figure 8 below shows a summary of a completed procedure.

Figure 8: Procedure Analytics

Results
Tools that build on integration flexibility from the start are more able to adapt to new innovations and

mission needs of the ever-changing space industry. By starting from scratch and implementing lessons learned from
previous programs, an integrated suite of commercially available tools has been developed, enabling multiple users
to seamlessly flow through the full circle of operations planning and execution.

Starting from a timeline that guides the overall mission, users select an activity and view details, including
a link to the procedure(s) to be executed. This procedure contains embedded key telemetry checks and links to
commands as well as manual instructions. The embedded commands are then sent from the C2 software and the
procedure then progresses to the next step and waits for telemetry confirming success of the command. The status of
the procedure is fed back to the timeline so all team members are cognizant of the current state of operations.
Additionally, multiple people can work simultaneously in the same procedure and timeline instance and see realtime
updates from other operators, promoting better situational awareness throughout the operations team with less verbal
communication required. The as-run data from the procedure and timeline is saved and informs future planning,
creating a closed-loop planning and execution process.

References
[Bell and Kortenkamp, 2011] Scott Bell and David Kortenkamp. Embedding procedure assistance into mission control tools. In
Proceedings of the IJCAI Workshop on AI in Space, 2011.

© 2020 Sierra Nevada Corporation

[Izygon et al 2008] Michel Izygon, David Kortenkamp, and Arthur Molin. A procedure integrated development environment for
future spacecraft and habitats. In Proceedings of the Space Technology and Applications International Forum (STAIF 2008),
available as American Institute of Physics Conference Proceedings Volume 969, 2008.

[Kortenkamp et al 2007] David Kortenkamp, R. Peter Bonasso, and Debra Schreckenghost. Developing and executing goal-
based, adjustably autonomous procedures. In Proceedings AIAA InfoSysAerospace Conference, 2007.

[Kortenkamp et al 2008] David Kortenkamp, R. Peter Bonasso, and Debra Schreckenghost. A procedure representation language
for human spaceflight operations. In Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS-08), 2008.

[Schreckenghost et al 2018] Debra Schreckenghost, Scott Bell, David Kortenkamp, and James Kramer. Procedure automation:
Sharing work with users. In AAAI Spring Symposium on Designing the User Experience of Artificial Intelligence, 2018.

[Schreckenghost et al 2015] Debra Schreckenghost, D. Billman, and T. Milam. Effectiveness of strategies for partial automation
of electronic procedures during NASA HERA analog missions. In Proceedings of the International Joint Conferences on
Artificial Intelligence (IJCAI) Workshop on AI and Space, 2015.

