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Extended Abstract

Robust autonomous systems will need to be adapt-
able to changes in the environment and changes in the
underlying physical system. This is especially critical
for long-duration missions. For example, autonomous
robots that explore other planets for years will need
to adapt to degradation in their capabilities and to
unforeseen environmental factors. Another NASA do-
main requiring robust, adaptable autonomy is control
of closed-loop systems that will provide life support to
crews on long-duration missions. We have been inves-
tigating autonomous control of advanced life support
systems for many years (Schreckenghost et al. 1998;
Kortenkamp, Keirn-Schreckenghost, & Bonasso 2000).
Recently we have begun investigating learning with re-
spect to advanced life support systems (Kortenkamp,
Bonasso, & Subramanian 2001). In this abstract I
briey discuss some of the roles machine learning can
play with respect to control of advanced life support
systems or any complex, real-time system.

Detecting signatures

Certain sensor \signatures" require speci�c responses
from the autonomous control system. These signatures
are often hand-coded by the programmer. For example,
the programmer might state that if the temperature is
above 100 and the pressure is above 1000 then vent
the tank. This is a trivial example and real-world ex-
amples will be more complex and involved. This means
that hand-coded signatures may not accurately capture
the event, especially if the environment or the physical
plant are changing. A variety of machine learning tech-
niques could be used to look at the history of the system
and adjust the signatures automatically. A speci�c re-
search challenge in this area is:

� Can we learn to parse real-world data streams into
recognizable system modes or events?

Optimizing control/resource usage

Long-duration missions, both robotic and crewed, face
severe resource constraints. Robots are often con-
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strained in the amount of energy (from batteries or solar
panels) that they have. Crewed mission are often con-
strained by life support consumables such as oxygen,
water and food. Given adequate simulations, machine
learning techniques such as reinforcement learning or
genetic algorithms can search through combinations of
control actions to discover a control policy that opti-
mizes usage of a particular resource (or combination of
resources). The resulting policy can be implemented
by the autonomous control system to increase mission
duration. We have conducted experiments using ge-
netic algorithms and reinforcement learning to optimize
resource utilization in a simulated advanced life sup-
port system (see (Kortenkamp, Bonasso, & Subrama-
nian 2001) for details).

Re�ning models

Many autonomous controllers contain a model of the
system they are trying to control, either explicitly or im-
plicitly. Typically, these models are hand-coded and do
not change. However, in long-duration missions the un-
derlying physical system may change dramatically due
to damage or degradation. For example, a robot's solar
panels may accumulate dust that reduces their power
output. Or, a robot's wheels may slip more than antici-
pated. Or a �lter in a life support system may clog more
frequently than expected. In each of these cases, ma-
chine learning techniques could be used to modify the
internal model of the system based on real-world data.
This is especially necessary if other machine learning
techniques are using these models for optimization (as
discussed in the previous section). A speci�c research
challenge in this area is:

� Can feedback from actual operation of the system
be used to automatically re�ne our simulations and
models?

Learning/optimizing sequences

The behavior of most autonomous systems can be char-
acterized as sequence of actions that lead to some de-
sired result. These sequences can be generated by plan-
ners, be hand-coded by programmers, or \emerge" from
the interactions of independent behaviors. In any case,



sequences are at the heart of a robust autonomous sys-
tem. Machine learning techniques can be used to opti-
mize sequences, especially in the case of sequences that
are generated by planners or are hand-coded. Opti-
mization of sequences can occur either by experiment-
ing with a simulation or by looking at data from pre-
vious executions of sequences in the real world. Some
research challenges in this area are:

� How can we provide safety guarantees when trans-
ferring a controller learned from simulations into the
real system?

� How can the system learn not only sequences but
also the contexts in which the sequences apply? Or
perhaps the system starts with a standard set of se-
quences and learns when and where each sequence
applies.

� What are the tradeo�s between having the system
learn sequences from scratch as opposed to \tweak-
ing" existing, working sequences?

Integration with autonomous control
architectures

A large complex system will have existing control pro-
cedures and possibly even an overarching control archi-
tecture. Very few current control architectures incor-
porate learning or adaptation. Integration of learning
into an existing (or proposed) autonomous control sys-
tem raises a number of important research issues, such
as:

� How good does the initial set of control behaviors or
rules need to be for learning to be e�ective? Can we
start tabula rasa or do we need very e�ective initial
strategies?

� What are the di�erences between learning control in-
formation, learning procedural information, learning
qualitative modeling information and learning plan-
ning information?

� What are the criteria whereby the autonomous con-
trol system turns learning on or o�?

� How does the autonomous control system decide
when to use new learned actions?

Control system design methodology

The solution space for a closed loop control policy in
any complex interacting system is enormous. We be-
lieve that machine learning techniques are a useful way
to \probe" the solution space and give control system
designers an idea as to its topology and the important
control variables. In this way, machine learning algo-
rithms become not just a tool for adjusting the on-line
control system, but also a tool for helping programmers
design an a priori control policy. There are some im-
portant research questions that need to be answered
with respect to using machine learning techniques as
\probes" of the solution space, including:

� For what class of dynamical systems is open loop
analysis (e.g., genetic algorithms) helpful for guiding
state space design for closed loop policy search?

� How do we design reinforcement learning algorithms
that can automatically design the right state space
features?

� Which machine learning techniques (e.g., reinforce-
ment learning, memory-based learning, genetic algo-
rithms, etc.) are the most useful for probing the so-
lution space?

� How can the discoveries of machine learning algo-
rithms be presented to control system designers so
that they can easily understand the topology of the
search space and the important control variables and
interactions?

� How detailed must the simulation be for results from
a machine learning algorithm that probes the solution
space to be applicable to the real physical system?

Conclusions

The use of machine learning to increase the robustness
of autonomous control of long-duration missions poses
some speci�c challenges to the machine learning com-
munity. In particular,

� Dealing with non-stationary dynamics

� Global optimization of large numbers of parameters

� Issues of safety and performance guarantees (veri�ca-
tion and validation of machine learning techniques)

� Inspectibility (so crew members know why certain
actions have been chosen)

� Long-term (or life-long) learning

� Coping with drastic changes in the underlying envi-
ronment or physical system

� Integration of machine learning techniques with tra-
ditional AI techniques like planners, sequencers,
model-based reasoners
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