
 Abstract

 Today’s robotics applications require complex, real-time,
high-bandwidth sensor systems. Although many such sys-
tems have been developed [12][14][17][10], integrating them
into an autonomous agent architecture remains an area of
active research. We will discuss how active perception sys-
tems can be integrated with agent architectures to perform
complex tasks. We present an active stereo vision system
integrated with a multi-tier agent architecture onboard a
mobile robot. This robot “attends to” multiple humans in a
complex and unstructured indoor environment.

 Introduction
Many of today’s autonomous agent architectures

[5][11][15] contain components which interact with the
world in a tight perception/action loop. The agent can act ef-
fectively if it can process its sensory input in a timely fash-
ion. However, this task is complicated by the use of high-
bandwidth sensors (when compared to sonar, or IR for ex-
ample) such as vision. The amount of data available from
such sensors led to the creation of active or foveal vision
systems [3]. However, an active vision system cannot be at-
tached to a robot architecture in a “plug and play” manner.
Perception needs to know about action and action needs to
know about perception. That is, an active perception system
needs to be directed and controlled by the agent’s current ac-
tion or task. Action in turn, needs to know about the type and
quality of information which is available from perception.

We present an active vision system based on proximity
spaces [12][13] which has been integrated into an autono-
mous agent architecture, 3T [5]. The novelty of this system
is the integration of the sensory systems with the agent ar-
chitecture via a system of representation which can be effec-
tively manipulated by the perception/action (PA) layer of
the architecture, known as the skill layer.

The organization of this paper is as follows. We begin by
discussing the needs of active vision systems and agent ar-
chitectures and how they can be addressed by perceptual
memory. We then define a system of perceptual memory
which can be used to integrate a general active perception
system into a general agent architecture. Next we describe

our active vision system and architecture. Finally, we show
how our system of perceptual memory integrates the two by
means of a task in which an autonomous agent follows mul-
tiple humans around in an unstructured environment and
“attends to” them.

 Active Vision and Perceptual Memory
Active vision systems [3][2] must handle a large volume

of data from the visual stream in a dynamic environment. As
a means of coping with the processing demands of such en-
vironments, these systems process only a subset of the visual
stream at any one time. This region, or fovea, represents the
system’s current focus of attention and the processing done
on this region usually computes specific results designed to
serve the system’s current action(s).

However, the agent will rarely be able to determine all the
information it needs to act from a single image region, or
even the entire image. Autonomous agents need a means of
remembering information recently determined from areas
which are no longer the current focus of attention. They need
perceptual memory systems which balance between the ef-
ficiency of a foveal, or attentive sensory system and the need
to consistently update all stored information in a dynamic
environment.

A feature which is common to both perception/action lay-
ers and active vision systems is their task dependence. As
discussed above, both the placement and processing of the
fovea of an attentive vision system is task dependent. Clear-
ly, the information which an agent’s perception/action layer
needs to select an action depends on the task specified by the
higher layers of the architecture. It is this similarity that al-
lows an active vision system to be integrated into an agent’s
perception/action layer via a system of task-dependent per-
ceptual memory.

The layer(s) of the agent architecture above the percep-
tion/action layer (such as the RAP system [8]), can specify
the current task by placing information into the PA layer’s
perceptual memory. The PA layer will act on this informa-
tion to try and complete its task. The active vision system, in
turn, will try and keep the perceptual memory up-to-date
with the state of the world. Since the PA layer has a close

Integrating Active Perception with an Autonomous Robot
Architecture

Glenn Wasson
Computer Science Department

University of Virginia
Charlottesville, VA 22903

wasson@virginia.edu

David Kortenkamp and Eric Huber
Metrica, Inc.

Texas Robotics and Automation Center
1012 Hercules

Houston, TX 77058
{korten | huber}@mickey.jsc.nasa.gov

connection between perception and action, it is natural that
active vision should be integrated into our architecture at the
skill layer.

We propose a system of perceptual memory which stores
task dependent information about recently perceived loca-
tions in the agent’s environment. This memory provides the
skills with a uniform interface to sensory input from the
world and goal-directed control from the sequencing layer
(the RAP system [8]).

 Perceptual memory
Perceptual memory in an autonomous robot architecture

stores information about recently perceived locations within
the agent’s environment. Perceptual memory is both local-
space and short-term. That is, elements of perceptual mem-
ory typically represent information about the environment in
close proximity to the agent and must frequently be modi-
fied to reflect the current state of a dynamic environment.
Both of these characteristics are crucial for perceptual mem-
ory to remain accurate. Elements of perceptual memory
must constantly be checked for validity and modified ac-
cording to the current world state, hence they are short-term.
Information about the environment beyond a certain range
from the agent’s position cannot easily be verified and
should no longer be stored, hence it is local-space.

Our system of perceptual memory is different from repre-
sentation systems which operate at other levels of autono-
mous agent architectures [7][9]. It is composed of small,
task dependent structures called markers [1][4][18]. The key
element of markers is that they represent positions of objects
in the agent’s environment. Our perceptual memory system
exists at the skill layer, allowing the skills to consult the
markers to determine which action to take. The markers
form the skill’s interface to the sensory stream. Each marker
is automatically kept up-to-date with the state of the world
as long as it is in perceptual memory, without explicit action
by the skills.

Markers consist of three component, called ‘what’,
‘where’ and ‘identity’. A marker’s ‘what’ component is a
task dependent identifier which one or more skills use to de-
termine commands to send to the agent’s effectors. For ex-
ample, a navigation skill may examine perceptual memory
for a destination marker and any obstacle markers to deter-
mine the direction the agent should travel. Note that we use
the notation destination marker to refer to a marker whose
‘what’ component is destination. One of the key properties
of markers which makes them effective for use by the skill
layer is their task dependence. Which objects are represent-
ed by markers will depend on the task, as will the ‘what’
components of those markers. For example, a chair may be
represented by an obstacle marker when the agent’s task is
to cross the room, but may be represented by a seat marker
when the agent is trying to sit down. In the first case, a nav-

igation skill uses the position stored in the obstacle marker
to determine how to steer the agent, but in the second case,
a sitting skill uses the marker to maneuver itself into the
chair.

The ‘where’ component contains the marker’s position in
some ego-centric local frame (we use polar coordinates).
The identity component specifies how the object associated
with the marker can be identified in the visual field. The
‘where’ and ‘identity’ components of a marker give the ac-
tive vision system the necessary information to select an ap-
propriate focus of attention and perform the required
processing. In the case of our active vision system, the iden-
tity component consists of a set of visual behaviors to en-
able. These behaviors control the processing and placement
of the focus of attention to maintain the position of the ob-
jects associated with the markers (i.e. track). In order to try
and strike a balance between the efficiency of stored repre-
sentation and the need to keep information from becoming
stale, markers also have an associated confidence in the in-
formation they contain. In our system, this confidence is
based on timers which begin counting down whenever the
object associated with the marker is not within the visual
field. When a marker’s timer reaches 0, the agent no longer
believes the information stored there. At this point, the agent
must either direct its vision system to re-acquire the associ-
ated object or drop the marker from perceptual memory.

One final aspect of perceptual memory is how markers
become associated with objects in the environment. The
agent’s current task (typically specified by the RAP system)
specifies certain roles which the agent must find objects to
fulfill. For example, when the agent’s task is “pour a bowl
of cereal”, it needs to identify objects to serve as the cereal
box and the bowl. Marker’s exist in 2 states, instantiated and
uninstantiated. An uninstantiated marker is one which spec-
ifies a role in the agent’s current task, but which has not yet
been associated with a object in the environment. An instan-
tiated marker has an association with an object and the per-
ceptual memory is tracking that object (i.e. maintaining the
‘where’ component of the marker).

 An Active Vision System
Since we will be using perceptual memory as a means of

integrating vision into our architecture, we need to under-
stand the particulars of our vision system to see how percep-
tual memory will be used.

Our active vision system is a foveal stereo vision system
which confines its processing to virtual, three-dimensional
regions of space called proximity spaces [12]. A proximity
space maps the region of 3-space it “occupies” to corre-
sponding 2-D regions of the left and right camera images.
Within these image regions, a set of correlation measure-
ments is made to determine disparity and motion vectors.
These vectors serve as input to a set of visual behaviors

which control the motion of the proximity space through 3-
space.

The volume of the proximity space (for this work spheri-
cal volumes were used) is represented by sub-volumes,
which we call stacks. The stacks are shown in the lower right
corner of figure 2. The light grey sphere represents the prox-
imity space, while the dark grey boxes represent the stacks.

Each stack is an array of correlation measurements made
between patches of the LOG filtered left and right images
(see figure 1). A breakdown of the stacks is shown in figure
2. The placement of a stack within the proximity space con-
trols which regions of the left and right images are correlated
against each other. A stack’s offset from the centroid of the
proximity space sets the center of the region of the left image
(called the reference region). The size of this region is deter-
mined by the height and width of the stack. The center and
size of the region of the right image used (called the search
region) are also specified by the location and size of the
stack. However, the depth of the stack also effects the size
of the search region. The search region is divided into sub-
regions whose size are equal to the size of the reference re-
gion. These sub-regions are placed at equally spaced offsets
within the entire search region. The number of sub-regions
is determined by the depth of the stack.

A correlation is performed between the reference region
and each sub-region of the search region. The offset in im-
age coordinates between the reference region and the sub-re-
gion of the search region with which it is correlated
represents a disparity, i.e. depth. The correlation value rep-
resents the likelihood that something is at that depth within
the proximity space. The collection of correlations (between
the reference region and the various sub-regions of the
search region) that form a stack, make a vector which can be
analyzed for peaks of appropriate strength, uniqueness and
distinctiveness. Appropriate peaks indicate the presence of
some object within the volume of space occupied by the
stack.

A threshold on the maximum peak for each stack provides
the system with a measure of occupancy for the proximity
space. If the max. peak for some stack is above the thresh-
old, there is some object within that part of the proximity

space at the depth indicated by the disparity of the two re-
gions whose correlation produced the max. peak. In addition
to the 9 stacks pictured in figure 2, the proximity space also
contains a motion correlation stack whose correlation values
are computed in a similar fashion to the disparity stacks, but
with the current and previous left images being used instead
of the left/right stereo pair. The peak values of the disparity
and motion stacks are used by a set of visual behaviors.

 Proximity space behaviors
One of our main objectives is to develop a method for

gaze control that allows us to acquire and track natural sa-
lient features in a dynamic environment. Using the proxim-
ity space to focus our attention, we developed a method for
moving the proximity space within the field of view. This
method is inspired by recent research into behavior-based
approaches [6], which combine simple algorithms (called
behaviors) in a low-cost fashion.

In our system, each behavior assesses information within
the proximity space in order to influence the future position
of the proximity space. The information being assessed by
each behavior is simply the “texture-hits” (presence of an
object at some depth within a stack) and “texture-misses”
(no object within a stack) within the proximity space. Based
on its unique assessment, each behavior generates a vector,
the direction and magnitude of which will influence the po-
sition of the proximity space. With each image frame, the
behavior-based system produces a new set of assessments
resulting in a new set of vectors. When a number of behav-
iors are active concurrently, their vectors are added together
to produce a single resultant vector, which controls the posi-

Figure 1. Left and Right LOG Images w/ Proximity Space

patchwise correlation at
regular disparity intervals

multiple stacks arranged
to form spherical
proximity space

single
correlation

 stack

left LOG image right LOG image

Figure 2. Proximity Space Decomposition

tion of the proximity space. In [13] we developed a set of vi-
sual behaviors which are summarized below.

•Follow: This behavior takes an average of several correla-
tion-based motion measurements within a proximity space
in order to produce a 2-D vector in the direction of motion.

•Cling: This behavior is attracted to surfaces and produces a
vector that tends to make the proximity space “cling” to
them. This vector points in the direction of the greatest
number of “texture-hits”.

•Avoid: This behavior is repulsed by surfaces and produces
a vector that tends to make the proximity space stay away
from them. This behavior is particularly useful as a front
end for obstacle avoidance.

•Lead: This behavior pushes the proximity space towards
the intended path of the mobile platform. It also biases the
proximity space to maintain a standoff distance from the
mobile platform.

•Pull: This very simple but useful behavior produces a pull
vector toward the stereo head. This vector tends to move
the proximity space toward local depth minima.

•Resize: This behavior influences the size of the proximity
space inversely proportionally to its distance from the ro-
bot.

•Search: This behavior cause a proximity space to begin sys-
tematically searching a given volume of space for texture.
It is used to initially locate the object to be tracked and also
to re-acquire the object if tracking fails.

Based on the task we want to perform, we activate differ-
ent sets of behaviors with different parameters. For example,
tracking involves the cling, follow and search behaviors.
The active set of behaviors determines the overall behavior
of the proximity space (or proximity spaces).

 An Autonomous Agent Architecture
Metrica Incorporated has, over the last several years, de-

veloped an autonomous robot control architecture that sepa-
rates the general robot intelligence problem into three
interacting layers or tiers (and is thus known as 3T).

1) A set of robot specific situated skills that represent the
architecture’s connection with the world. The term situated
skills [16] is intended to denote a capability that, if placed in
the proper context, will achieve or maintain a particular state
in the world. For example, grasping, object tracking, and lo-
cal navigation. The skills are maintained by a “skill manag-
er”.

2) A sequencing capability which can differentially acti-
vate the situated skills in order to direct changes in the state
of the world and accomplish specific tasks. For example, ex-
iting a room might be orchestrated through the use of reac-
tive skills for door tracking, local navigation, grasping, and
pulling. In each of these phases of operation, the skills of the

reactive level are connected to function as what might be
called a “Brooksian” robot [6] -- a collection of networked
state machines. We are using the Reactive Action Packages
(RAPs) system [9] for this portion of the architecture.

3) A deliberative planning capability which reasons in
depth about goals, resources and timing constraints. We are
using a state-based non-linear hierarchical planner known as
AP [7]. AP is a multi-agent planner which can reason about
metric time for scheduling, monitor the execution of its
plans, and replan accordingly.

The architecture works as follows, the deliberative layer
takes a high-level goal and synthesizes it into a partially or-
dered list of operators. Each of these operators corresponds
to one or more RAPs in the sequencing layer. The RAP in-
terpreter (sequencing layer) decomposes the selected RAP
into other RAPs and finally activates a specific set of skills
in the reactive layer. Also activated are a set of event moni-
tors which notifies the sequencing layer of the occurrence of
certain world conditions. The activated skills will move the
state of the world in a direction that should cause the desired
events. The sequencing layer will terminate the actions, or
replace them with new actions when the monitoring events
are triggered, when a timeout occurs, or when a new mes-
sage is received from the deliberative layer indicating a
change of plan.

 An Integrated Architecture
We have integrated a proximity space vision system with

Figure 3. Our Robot

the skill layer of the 3T architecture and embodied it in a ro-
bot agent (see figure 3). The agent is an RWI B12 with 3
cameras (2 grey scale and one central color camera) mount-
ed on a pan/tilt platform. These cameras (and the agent’s
shaft encoders) are the only sensors used by the agent. The
agent’s task is to monitor the location of multiple (2) hu-
mans in its environment and attend to them. The robot could
be bringing tools or supplies to workers on a factory floor or
serving guests in a restaurant.

 An Agent Application
Our agent’s task is to assist multiple people in an unstruc-

tured indoor environment. The agent must locate and detect
the presence of the humans based on initial estimates of their
locations supplied by the RAP system. Since the humans are
spread throughout the environment, the agent will seldom be
able to keep all of them in its field of view at any one time.
The agent must monitor and track the position of each hu-
man it is assisting. The agent will attend to each person in
turn, staying a small fixed distance from them. When the
agent decides to move on to a different human, it uses its
stored knowledge of the person’s last known position in an
attempt to locate that individual. Once the human has been
located, the agent can attend to it. Figure 4a shows the agent

(in the foreground) with two humans. The agent is attending
to the standing person. Figure 4b shows the vision system.
The left and right LOG images are shown. The window in
the lower left corner shows the output of the color vision

system. The white areas contain human skin tones.

This application is similar to the one implemented by
Franklin et. al. in [10]. While both [10] and this work inte-
grate active vision into an agent architecture, this work con-
cerns itself with the redirecting of the agent’s attention to
previously seen portions of the environment.

 Perceptual Memory Implementation
Our agent’s skill layer interacts with both the proximity

space and color vision systems through perceptual memory.
In this section, we show how the agent uses its vision sys-
tems to instantiate and track markers for use by the skills.

In this task each human is represented in perceptual mem-
ory by a marker. The RAP system places two person mark-
ers in the skill layer’s perceptual memory. There are 2 skills
which are active in the skill manager, one which controls the
robot’s wheels and one which controls its pan/tilt “neck”.
These two skills use the ‘where’ component of the marker to
which the agent is currently attending, to move the agent
within a fixed distance of the human. Each marker’s confi-
dence measure begins to decrease when its position is out-
side the agent’s field of view. When the confidence reaches
zero, the agent attempts to attend to the object (human) as-
sociated with the marker. This means it will direct its cam-
eras to the last known location of the human and attempt to
reacquire it (and move toward it).

Each marker in perceptual memory has an associated
proximity space which it uses to track its associated object.
Maintenance of a marker’s ‘where’ component is as follows.
First its ‘where’ coordinates are transformed based on the
ego-motion of the robot since the last update. If this new po-
sition should fall within the agent’s current field of view, the
associated proximity space is activated (and its correlations
performed). If the proximity space reports sufficient occu-
pancy, the 3-D position of the centroid of the proximity
space relative to the agent is stored in the marker. Otherwise
the transformed position becomes the new stored position.

If the agent can track the objects represented by the mark-
ers, the question of how the association between the two is
first made arises. When the markers are placed in the skill
layer’s perceptual memory by the RAP system, they are un-
instantiated and thus contain only hypothesized positions for
the humans. The color vision system consults perceptual
memory to find any uninstantiated markers whose hypothe-
sized position falls within the current field of view.

For each such marker, the central color camera is used to
examine the image for skin tones (red hues) associated with
humans. Image regions with an appropriate response are
matched to a simple constraint model of the positions of the
human head and arms. Since the color vision system is mo-
nocular, when a human is detected, its azimuth and elevation
can be determined, but its depth cannot. We say a marker

Figure 4a. The Agent’s Task Environment

Figure 4b. The Agent’s View

with an azimuth and elevation, but no depth, is “hypotheti-
cally” instantiated. The proximity space system places a
proximity space, at the minimum vergable depth, along the
vector indicated by the marker’s azimuth and elevation. This
proximity space then “slides” along the vector performing
an analysis for surface texture along the way. When the
proximity space occupancy is greater than a certain value,
the proximity space has come to rest on the object spotted by
the color vision system. The normal proximity space track-
ing behaviors are now enabled and the proximity space can
track the object in 3 dimensions. The associated marker is
now said to be instantiated.

The agent attempts to keep the human in view and tries to
stay within a fixed distance of the human. Since there are
multiple humans to attend to, the agent must decide how to
allocate its resources. This is done based on the confidence
value associated with each marker. When a marker’s confi-
dence reaches 0, the agent will attend to the object associat-
ed with that marker, otherwise, it will continue attending to
the same object. When the agent must redirect its gaze to re-
acquire a marked object which is outside its field of view, it
uses the ‘where’ component of the marker as a starting point
for its reacquisition. If the target is not immediately detect-
able. The proximity space moves in a random spherical pat-
tern around the object’s last known position. At each point a
texture analysis, similar to the initial instantiation along the
vector, is performed. When the proximity space lands on an
object, it begins tracking it. In general, the humans do not
move far from their last known locations, while the agent is
elsewhere. If they move too far, the system will be unable to
locate them. If this happens, the agent may wish to declare
the marker uninstantiated and start the instantiation process
again.

The agent’s perceptual memory assists in this task in 3
ways. First, it provides information about objects outside the
agent’s current field of view. Since the field of view of the
agent’s cameras is limited, it can seldom (if ever) keep all its
targets in view at the same time. Perceptual memory allows
the agent to remember the ego-centric locations of a small
collection of task relevant objects.

Second, perceptual memory forms an interface to the sen-
sors for the skills. In our system, the proximity space behav-
iors require information about the individual stacks, but the
navigation and neck skills in the skill manager only require
the position of the proximity space as a whole. The percep-
tual memory provides exactly this information without re-
quiring the skills to know about the details of proximity
spaces. In our system, the markers serve as a basis for sensor
fusion between the color and stereo vision systems. In gen-
eral, the ‘where’ component of markers could represent
combined information from all the agent’s sensors.

Finally, the perceptual memory provides a communica-
tion mechanism for information from the RAP system about

the agent’s environment beyond its current location. The
RAP system initially provides the perceptual memory sys-
tem with estimated positions for the two humans. The prox-
imity space system subsequently refines those estimates for
use by the skills. However, the RAP system could be direct-
ing the skill layer to look for certain objects as the agent
moves through its environment. For example, if the RAP
system believes that the agent is at a particular location on
some map, it can create markers for various landmarks
which should be visible to the vision system. These markers
will be instantiated by the perceptual memory system and
then can be used by the skills to direct the motion of the ro-
bot.

 Conclusions
Autonomous robots need powerful sensors. Active vision

systems such as our proximity space system can provide in-
formation about important aspects of the environment at
high speed. However, care must be taken when integrating
an active vision system into an agent architecture because of
the high volume of data which must be processed and the
limited area in which the processing takes place at any in-
stant in time.

We have presented a system of perceptual memory, based
on markers, which allows us to retain sensor input from the
proximity spaces over time. The perceptual memory system
attempts to compromise between the efficiency of foveated
processing and the need for a high level of maintenance on
the information contained in the markers via a confidence
measure.

Our agent performs its task effectively in a complex and
unstructured environment. The proximity space system
deals with the difficulties of the environment, while keeping
the perceptual memory accurate. The perceptual memory
provides just the information which is needed for the skills
to accomplish this task (and many others we believe).

 References
[1] Agre, P.E.; and Chapman, D. 1987. Pengi: An Imple-

mentation of a Theory of Activity. AAAI-87: 268-272.

[2] Aloimonos, J. 1988. Active Vision. International Jour-

nal of Computer Vision 1(4): 333-356.

[3] Ballard, D. H. 1991, Animate Vision. Artificial Intelli-

gence 48 (1): 57-86.

[4] Brill, F.Z., Wasson G.S., Ferrer, G.J. and Martin W.M.

1997. The Effective Field of View Paradigm: Adding

Representation to a Reactive System. Engineering

Applications of Artificial Intelligence issue on Machine

Vision for Intelligent Vehicles and Autonomous Robots.

to appear.

[5] Bonasso, R. P., Kortenkamp, D., Miller, D. P., and Slack,

M. 1997. Experiences with an Architecture for Intelli-

gent, Reactive Agents. Journal of Experimental and

Theoretical Artificial Intelligence 9(2).

[6] Brooks, R.A. 1986. A Robust Layered Control System

for a Mobile Robot, IEEE Journal of Robotics and Auto-

mation, RA-2(1):14-23.

[7] Elsaesser, C. and MacMillan, R. 1991. Representation

and algorithms for multiagent adversarial planning.

Technical Report MTR-91W000207, The MITRE cor-

poration.

[8] Firby, R.J. 1987. An Investigation into Reactive Planning

in Complex Domains. AAAI-87: 202-206.

[9] Firby, R.J. 1989. Adaptive Execution in Complex Worlds.

PhD Thesis. Yale University.

[10] Franklin, D., Kahn, R.E., Swain, M.J. and Firby, R.J.

1996. Happy Patrons Make Better Tippers: Creating a

Robot Waiter Using Perseus and the Animate Agent

Architecture. International Conference on Face and

Gesture Recognition.

[11] Gat, E. 1992. Integrating Planning and Reacting in a

Heterogeneous Asynchronous Architecture for Control-

ling Real-World Mobile Robots. AAAI-92: 809-815.

[12] Huber, E. 1994. Object Tracking with Stereo Vision.

AIAA/NASA Conference on Intelligent Robots in Fac-

tory, Service and Space (CIRFFSS ‘94).

[13] Huber, E., and Kortenkamp, D. 1995. Using Stereo

Vision to Pursue Moving Agents with a Mobile Robot.

IEEE International Conference on Robotics and Auto-

mation.

[14] Olson, T.J. and Coombs, D.J. 1991. Real-Time Ver-

gence Control for Binocular Robots. International Jour-

nal of Computer Vision 7(1): 67-89.

[15] Simmons, R. 1994. Structured Control for Autonomous

Robots. IEEE Transactions on Robotics and Automa-

tion, 10 (1): 34-43.

[16] Slack, M.G. 1992. Sequencing Formally Defined Reac-

tions for Robotic Activity: Integrating raps and gapps.

SPIE Conference on Sensor Fusion.

[17] Uhlin, T., Nordlund, P., Maki, A., and Eklundh, J.O.

1995. Toward and Active Visual Observer. ICCV: 679-

686.

[18] Wasson, G.S., Ferrer, G.J. and Martin, W.N. 1997. Sys-

tems for Perception, Action and Effective Representa-

tion. FLAIRS-97 Track on Real-Time Planning and

Reacting. 352-356.

