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• This article discusses our experience building and running an intelligent control system during a two-year 
test for a NASA advanced life support (ALS) system.  The system under test was known as the integrated 
water recovery system (iWRS).  We used the 3T intelligent control architecture to produce software that 
operated autonomously, 24/7 for sixteen months.  The article details our development approach, the 
successes and failures of the system and our lessons learned.  We conclude with a summary of spin-off 
benefits to the AI community and areas of AI research that can be useful for future ALS systems. 

 
"We'll have to go with four two-head pumps for the nitrifier." 
The AI controls engineer frowned at the speaker, a young mechanical engineer in 

charge of the physical design of a state-of-the-art biological water processor (BWP).  
"But that pump doesn't give me any feedback for speed, so we can't be sure it's 
responding to commands." 

"It'll have to do," said a woman at the far end of the conference table.  As the 
manager for the integrated water recovery system (iWRS), she made the final calls. "The 
eight-head pump won't function at the required pressures and the four-heads are just too 
expensive.  Can't you use the tube pressures to know if the pumps are working?" 

The controls engineer shrugged, spreading his hands. "Sure, but with the single 
transducer to monitor eight tubes, we won't know for three to five minutes after the pump 
command is sent." 

"Can we live with that?" asked the manager, glancing around the table at each 
member of the assembled group of microbiologists and chemical engineers. 

One of the engineers tapped at his PDA then spoke up. "Even at 32 mils a minute, 
the pressure build-up from the recirculation pump won't be enough to trigger the relief 
valve.  I think it's in the noise." 

"Okay," said the manager. "We go with the two-heads." 
 
The time frame was the winter of 1999, and the above exchange was typical of 

many the AI controls team from the Robotics, Automation and Simulation Division 
(AR&SD) at Johnson Space Center would have with the advanced water recovery 
personnel as the two groups prepared for a year long test of a new integrated water 
recovery system (iWRS), slated to begin in January of 2001.  We were building an AI 
control system for that test that had to handle upwards of 200 sensors and actuators 
grouped among four water processing subsystems. The control system would run 24/7 
and be completely autonomous.  It was an applied AI engineer's dream and in the end we 
were extremely successful.  But there were events that happened for which we were ill 
prepared and we would come away with a much better appreciation for the difficulties 
involved in controlling long duration life support systems. 

This article is the story of our experiences developing and running the iWRS AI 
control system. 

 



The Early Years 
 
Since 1995, the AI controls team had been working with several groups in the 

Crew and Thermal Systems Division (CTSD), building AI control systems in support of 
CTSD's investigations in advanced life support (ALS).  In 1995, they put a man in an 
airlock linked to a ten-foot diameter chamber full of wheat (Lai-fook and Ambrose, 
1997).  For fifteen days, the man lived, worked and exercised in the chamber while the 
wheat crop took in his carbon dioxide and produced oxygen for him.  The control system 
-- our first for ALS -- monitored and provided caution and warnings (C&W) for the 
climate and nutrient environment of the wheat crop. 

In 1997 they put two men and two women in a thirty-foot chamber for ninety-one 
days (Schreckenghost et al., 1998b). A physical-chemical air revitalization system 
recycled the air for three of the four people, while a wheat crop in the ten-foot chamber 
did the same for the fourth.  The ALS team also experimented with a solid waste 
incinerator. Our second ALS AI control system managed the transfer of O2 and CO2 
among the gas reservoirs for this test to ensure crew and crop health and to recycle gases 
produced by waste incineration.  These reservoirs included a crew habitat, a plant 
chamber, an airlock, and a number of pressurized tanks (see Figure 1).  Operating 24/7, 
the AI system also employed a generative planner that scheduled waste incinerations and 
crop planting and harvesting, coordinating those tasks with the day-to-day product gas 
transfer. 

 
Figure 1 The Product Gas Transfer Environment. 



For both of these projects we used a three-layer architecture (Gat, 1998) to design, 
organize and develop the control software.  AR&SD had used a particular 
implementation of this architecture known as 3T (see sidebar) in a number of robot 
projects prior to 1995 (Bonasso et al., 1997), and since life support systems are a form of 
immobots (Williams and Nayak, 1996), its application to ALS projects was 
straightforward. 



The 3T Intelligent Control System (sidebar) 
The ALS control system uses the intelligent control software for autonomous systems known as 3T 
(Bonasso et al., 1997), which separates the general robot intelligence problem into three interacting tiers 
(see Figure 2): 

°  A set of robot specific, situated skills (or behaviors) 
that represent the architecture's connection with the 
world through the sensors and actuators. The term 
situated skills is intended to denote a capability that, 
if placed in the proper context, will achieve or 
maintain a particular state in the world. 3T’s 
implementation includes primitive actions, queries 
and monitoring events that can be combined to form 
autonomous behaviors. 3T's skill layer is a distributed 
set of skill groups coordinated by a skill manager for 
each ALS subsystem. For the iWRS system, control 
signals and sensor data for the skills are obtained 
from a suite of analog to digital (A/D) conversion 
cards in the controls rack (see Figure 7) co-located 
with the CPUs (we are using a 
VERSAModuleEurocard (VME) bus, with Vxworks 
running on Power PCs). 
° A sequencing capability that can differentially 
activate the situated skills in order to direct changes in 
the state of the world and accomplish specific tasks. 
3T uses the Reactive Action Packages (RAPs) system 
(Firby, 1999) for this portion of the architecture. The 
RAPs engine is an interpreter, indexing RAPs 
(essentially sets of linear plans) from a library based 
on the changing world situation. Thus one can change 
a RAP or add new RAPs while the sequencer is 
executing. 
°  A deliberative planning capability that reasons in 
depth about goals, resources and timing constraints. 
3T uses a non-linear hierarchical task net planner 
known as AP (Elsaesser and Sanborn, 1990). AP uses 
the highest level RAPs as its primitive plan operators, 
and can replan both spatially and temporally. The 

planner is efficient, but it becomes even more potent when its level of detail is abstracted to the RAPs of 
the sequencing layer below it.  It is important to note that once the planner generates a plan, it executes the 
plan by placing primitive plan actions on the sequencer's agenda and monitoring the results of the 
sequencer's actions. 

Communication among the layers and between skill managers uses the IPC message passing 
protocol (Simmons and Dale, 1997). With this communications infrastructure, data from any part of the 
system can be monitored by any other part of the system. 

A key aspect of 3T is that it gives developers the ability to integrate the continuous, near-real time 
control algorithms in the bottom layer with advanced AI algorithms in the top layer -- i.e., automated 
planners and schedulers -- that are event driven but more computationally expensive.  3T does this through 
the integrating action of the middle layer. Essentially, the middle layer translates the goal states computed 
by a planning/scheduling system into a sequence of continuous activities carried out by the skills layer, and 
interprets sensor information from the skills layer as events of interest to the upper layers. 

3T applications run autonomously due in large part to the principle of “cognizant failure” (Gat 
1998) embodied in each level of the architecture.  The skills level notifies the sequencer when it loses any 
of the states it must achieve; the sequencer uses alternative sequences when the primary methods fail, 
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Figure 2 The 3T AI Control Architecture 



ultimately safing the controlled system; and the planner can synthesize alternative plans in light of the 
failures of the lower two tiers. 
 
 In each of the previous efforts, the 3T team from AR&SD was required to 

interface the AI architecture to existing legacy software and hardware systems 
(Schreckenghost et al., 1998a).  In 1999, however, we began to support advanced water 
recovery projects that were being built from the ground up.  As a "charter member" of the 
water research group in CTSD, the AR&SD AI team was influential in the selection of 

Advanced Water Recovery System (sidebar) 
The advanced water recovery system (WRS) is a set of next generation WRS components, which promise 
to provide potable water using fewer consumables (filters, resins, etc.) and much less power than the 
components currently in use on the International Space Station (ISS). Figure 3 and Figure 4 show the four 
subsystems used in the integrated WRS test (iWRS). The iWRS is comprised of 1) a biological water 
processor (BWP) to remove organic compounds and ammonia; 2) a reverse osmosis (RO) subsystem to 
remove inorganic compounds from the effluent of the BWP; 3) an air evaporation system (AES) to recover 
additional water from the brine produced by the RO; and 3) a post processing system (PPS) to bring the 
water to within potable limits.  
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Figure 3 . The water flow paths and the target quality values in milligrams and millisemens (an indirect 
measure of water quality) per liter for the iWRS.  The numbers in parentheses for the PPS effluent are those 
for typical residential tap water. 

 The WRS planned for use on the ISS is a physical-chemical system that requires a yearly resupply 
of roughly 3000 pounds of consumables (filters, membranes, etc.)   In contrast the advanced WRS 
developed and tested at JSC is projected to require only 250 pounds of consumables per year and use 50% 
less power.  



hardware components and the design of the overall control of these systems.  For the first 
time, we were able to build the full 3T system from the analog-to-digital (A/D) converter 
boards used by the sensors and devices to the top tier of the architecture.   

In the summer of 1999 we used the bottom two layers of 3T to provide 
autonomous control for a single subsystem -- a second-generation biological water 
processor -- during a 450 day 24/7 test. Then in January 2000 the advanced water 
research group received ALS funding for the year long integrated water recovery system 
(iWRS) test, involving four advanced water recovery subsystems (Bonasso, 2001)  (see 
Advanced Water Recovery sidebar).   

 
Figure 4 The AWRS subsystems.  At the left is biological water processor (BWP). Upper right is the rack 
containing the Reverse Osmosis (RO) subsystem in the rack bottom, the air evaporation subsystem (AES) 
at the top of the rack, and the post processing system (PPS) in the rack's left rear.  The bottom picture is a 
close up of the wick in the AES. 



Build-up 
 
Using 3T allowed us to develop the control of for the iWRS in a modular fashion in two 
ways.  First, moving from bottom to top (see Figure 6), each layer has its own data 
structures, timing constraints and development tools that allow for parallel development 
of the software. So we were able to develop skills sets based on the evolving hardware 
specifications while simultaneously developing the sequencer procedures. Early on, as 
the water research team developed the design for each subsystem, one part of the 3T team 
wrote the sequencer procedures for each subsystem in the RAPs language (which in turn  

 
Figure 5 The iWRS waste water collection system.  Human volunteers donate urine, 
showers, and hand washes, using liquid soap with the chemical composition of that to be 
used on the space station.  A computer system responds to the pushbuttons at each donation 
site to weigh and record each type of donations before sending the donation to the main 
feed tank for the iWRS.  Prepared solutions representing respiration water are added to the 
feed tank to complete a composition representative of that expected on the space station 
and/or planetary outposts. 



is written in Lisp) using "virtual skills", that is, Lisp skills connected to a Lisp simulation 
of the expected hardware. A virtual simulation of, say, the RO subsystem, could then be 
shown on a laptop to the WRS engineers and the control design refined in an iterative 
process even before the actual hardware was available.  The primary result of this process 
was a set of skill specifications for each subsystem (see Figure 8).   

As the hardware specifications became more firm, another part of the 3T team 
wrote the skills for the subsystems in C on a VxWorks rack in the AR&SD laboratories, 
using the skill specifications and testing them with rudimentary C simulations of the 
expected hardware.  When the hardware for a given subsystem came on line, the skills for 
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Figure 6 The 3T Implementation for the iWRS test.  For each of the WRS subsystems 
we developed one skill manager, which ran on its own CPU.  The skill managers 
provided the A/D results to the all of the skills modules and broadcasted that data at 
specified intervals for use by extant clients for analysis and review.  The sequencer 
level managed task control and the top level control was provided for the most part by 
the engineers running the test 



that subsystem were installed in the test rack in the water research laboratory.  After 
testing the individual data channels, the skills developers used a skill-level command 
graphical user interface (GUI) to activate and de-activate individual skills. This 
development approach enabled the 3T team to deliver the low-level control for each 
subsystem within two weeks after the hardware installation of that subsystem.   

Next, the sequencer procedures for the subsystem, known as reactive action 
packages (RAPs) were installed on the AI workstation and tested with 
 
 

 
Figure 7 3T Control Computers for the iWRS.  On the left is a view of the 3T VME Rack behind the 
computer that is used as a secondary interface to the RO high-pressure pump.  On the right is a view 
of the (unattended) 3T control table. From foreground to back, the displays are two sequencer/planner 
displays, the IPC/skill manager display, the display of the broadcast server, and a display associated 
with the high-pressure pump used in the RO.  In the upper right is the display showing the graphical 
user interfaces (GUIs) for each subsystem generated by the data broadcast from each skill manager. 



 

------------------------------------------------------- 
Skills -- for the RO agent 
---------------------------------- 
 
Name      RO 
Type      device 
Params    interval 
Outs      none 
Function: A device skill that gets all the sensor values and provides them to  
the other skills. Also sends commands to the pumps and valves. Also every 
interval seconds, this skill broadcasts a data message with the values of all 
the channels listed above to the IPC server so that clients (e.g., a logging 
facility) can access them (see the IPC structure at the end of this document). 
 
Name      valve_position 
Type      query 
Params    valve (process/pps_select) 
Outs      value (for process:primary/secondary/purge/off/unknown;  
          for pps_select:pps/tank/reject/off/unknown), and result (okay or Err) 
Function: Checks V02 or V03. One of lines V02_i1 through  V02_i3 or V03_i1 
through V03_i3 will be hi, and the rest will be low. If all are low, the result 
is off. Any other pattern is unknown. 
 
Name      valve_at 
Type      event 
Params    valve (process/pps_select), value (for  
          process:primary/secondary/purge/off; for  
          pps_select:pps/tank/reject/off) 
Outs      result (okay/ERR)  
Function: Waits for V02_i1 through V02_i3 or V03_i1 through V03_i3 to indicate 
value (see the valve_position skill). When the condition is achieved the event 
returns result. 
 
Name      turn_valve 
Type      block 
Params    valve (process/pps_select), value (for  
          process:primary/secondary/purge/off;  
          for pps_select:pps/tank/reject/off) 
Outs      none 
Function: Sets one of V02_o1 through V02_03 to hi the rest to low, except for 
off when all lines will be set lo. 

Figure 8 Excerpts from the RO Skill Specifications 



 

the validated skills.  An example of the resulting RAPs is shown in Figure 9. The skills 
level remained relatively stable once the sensors and actuators were in place. We repeated 
the process for each subsystem, and then, developed and tested additional sequences to 
integrate the subsystems. The total initial software development took on the order of four 
and a half months, using roughly one month for each subsystem and two weeks for 
integration testing. 

The second manner in which the modularity of the 3T system sped our 
development is that the architecture allows the independent development and testing of 
groups of ALS subsystems and a subsequent incremental integration of these subsystems.   
This aspect of the control development became important for the WRS team in dealing 

(define-primitive-event (valve-at ?agent ?valve ?open-closed ?error) 
  (event-definition (:valve_at (:valve . ?valve) (:value . ?open-closed)))  
  (event-values :bound :bound :bound :unbound))  
 
(define-rap (turn-valve-p ?agent ?valve ?open-closed ?timeout) 
 
  (succeed (and (valve-position ?agent ?valve ?value ?error) 
                (= ?value ?open-closed))) 
  (timeout ?timeout) 
  (method  
    (primitive 
     (enable (:turn_valve (:valve . ?valve) (:value . ?open-closed)) 

      (wait-for (valve-at ?agent ?valve ?open-closed ?result)  
                 :succeed (?result)) 
     (disable :above) 
     )) 
  ) 
 
(define-rap (processing-start ?stage ?adjust-time)  
 
... 
 
(method purge 
          (context (and (= ?stage purge) 
                        (valve-position roskm pps_select ?old-pos ?error) 
                        (= ?old-pos pps) 
                        (nominal-pump-speed roskm feed ?wwsp) 
                        (default-timeout ?dto))) 
    (task-net 
     (sequence 
      (t1 (syringe-pump-p roskm start feed ?wwsp 30)) 
      (t2 (water-flowing-p roskm stop recirc 0 ?dto)) 
      (t3 (turn-valve-p roskm pps_select reject ?dto)) 
      (t4 (turn-valve-p roskm process purge ?dto)) 
      (t5 (turn-valve-p roskm pps_select tank ?dto))))) 

Figure 9 A primitive event, a primitive RAP and a high level RAP which use the skills from the skill spec 
shown previously. The event definition and the primitive enable clause invoke the C-code skills, whose 
name and arguments are delineated by colons. The primitive RAP succeeds when the valve position 
matches the commanded value.  There are several methods associated with the processing-start RAP, each 
indexed by a context clause.  The method shown is valid when the required RO stage is purge and the pps-
select valve is open to the pps.  In this case, the RAP starts the RO main feed pump, stops the recirculation 
pump and turns the pps-select valve to reject (relieving downstream pressure).  Then the RAP turns the RO 
process valve to the purge position and turns the pps-select valve to the tank position. 



with the startup time of the BWP.  The microbes in the BWP take one to two months to 
form viable colonies to process feed water.  This inoculation period meant that bringing 
the other subsystems into test would be delayed by at least that time period, and even 
longer if the inoculations were problematic.   

To give the water team more breathing room, the 3T group suggested that the 
water team divide the official start of the test into two components: the BWP and the RO, 
and then the RO and the other two subsystems. In the iWRS system the pivotal subsystem 
is the RO.  This system receives BWP effluent, processes it and provides product water 
for the two downstream systems.  In effect the BWP is independent of the downstream 
systems, so it could conceivably be started early while the downstream systems were still 
being built.  Because of the modularity of 3T, the initial iWRS could consist of the first 
two subsystems, with the output going to drain while the inoculation proceeded, and the 
second iWRS could include all four subsystems.  In this manner the water team started 
the test with only the first two subsystems in April of 2000, and brought the other two 
systems online in December of 2000, in time to make a January 2001 full start. 
 

 
Figure 10 A Schematic Display of the iWRS as seen by 3T.  The BWP is in the upper left, the RO in the 
upper right, the AES in the lower right and the PPS in the lower left.  Gray lines indicate flow pipes; black 
pipes indicate water or air currently flowing. Small boxes with lines at junctures indicate motorized valves. 



Controlling the iWRS System 
 
In this section we describe for the final iWRS system that went into test in 2001 the 
control tasks for each subsystem and for the iWRS as a whole (see Figure 10). 
 
The BWP 
 
Feed water from the waste water collection system (see Figure 5) first passes through the 
biological water processor (BWP). The main control task for the BWP is to keep the 
water in the gas-liquid-separator (GLS -- see the lozenge icon with the three level 
switches in the upper left of Figure 10) at mid-level. This is accomplished by varying the 
speed of the feed pump while the draw from the RO main pump remains constant.  The 
other requirement is to monitor the pressures in the recycle loop as well as in the nitrifier 
tubes and to carry out automatic shutdown procedures (ASDs) in the case of off-nominal 
values.  For example, if one of the nitrifier tubes shows too high a pressure, the water and 
air pumps associated with that tube are shutdown and a warning is issued. 
 
The RO 
 
The RO (upper right portion of Figure 10) is the lynchpin subsystem since it pulls water 
from the GLS of the BWP, and delivers its permeate to the PPS and its brine to the AES.  
It removes inorganic compounds by pushing the input water at high pressure through 
tubular membranes that act like molecular sieves.  The RO must go through up to four 
distinct phases in each cycle.  The primary phase draws water into a coiled section of 
pipe that acts like a reservoir, while processing permeate in the outer loop of pipes. In the 
secondary phase, the rejected water is concentrated into brine in the inner loop of pipes. 
The usual third phase is to purge the brine to the AES.  But periodically the membrane 
needs to be cleaned of particulates that collect on its surface by running the water 
counterclockwise in the inner loop during what is known as the slough phase. 

Additionally there are a number of ASDs associated with backpressure on the 
membranes, permeate conductivity and loss of pressure in the recirculation loops. 
 
The AES 
 
The AES wick absorbs RO brine as it fills the AES reservoir (lower right of Figure 10) 
during the RO purge cycle.  During operation, hot air blows across the wick taking up 
evaporated water and leaving solid waste on the wick. The moisture-laden air then passes 
through a heat exchanger where water is condensed into an output tank. The AES 
processes the brine in batches.  When the brine fills the reservoir to the second level 
switch, the AES starts up, processing the brine until the lowest switch reads dry, at which 
point it goes to standby awaiting another load.  ASDs concern overheating and loss of 
coolant fluid in the heat exchanger.   

Additionally, the AES pumps condensate to the PPS when the condensate tank 
reaches a certain level or when the RO is not sending its condensate to the PPS to keep a 
steady flow of water to the PPS). When the wick is spent, as indicated by the conductivity 



of the condensate, the AES engineers initiate a dry out procedure prior to replacing it.  A 
typical wick lasts 45 days. 
 
The PPS 
 
The PPS (lower left of Figure 10) "polishes" the water from the RO and the AES by 
removing trace inorganic material via ion exchange beds, and trace organics by oxidizing 
them with ultra-violet (UV) radiation. The PPS controls monitor the input water pressure.  
When the pressure goes above a threshold that indicates water flow from either the AES 
or the RO, the O2 concentrator is started and a number of UV lamps are turned on 
commensurate with the measured total organic carbons (TOC).  When the pressure falls 
below the threshold, the concentrator and lamps are turned off. An average TOC is 
calculated based on the instantaneous TOC and the water accumulated in the product tank 
to determine whether the PPS output should be rejected to the BWP feed tank.  ASDs 
concern overheating of the lamps and high output conductivity, indicating that the resin 
in the ion exchange beds has been used up. 
 
Integrated Control 
 
The modularity of the hardware systems is such that these subsystems are considered four 
loosely coupled agents, which mainly react to their inputs and water quality, and only 
rarely respond to the operation of the other subsystems. Interfaces among the subsystems 
are: 

• The AES pumping condensate to the PPS in the RO’s stead (previously 
mentioned) 

•  The RO monitors the level of the GLS in the BWP to insure that there is 
sufficient resource for it to draw upon.   

•  PPS pressure changes are corroborated by sensing the state of the pumps and the 
valve configurations of the RO and AES.  For example, if the inlet pressure is not high 
enough to indicate water flow but the AES or RO pump and valve configurations indicate 
water is flowing, then the PPS will begin operations. 

• When there is a complete ion exchange bed breakthrough, the RO and the AES 
sense the high PPS conductivity and recycle their effluent to the BWP feed tank. 
 

The Test 
 
The iWRS test consisted of series of test points each representing a different 
configuration and each slated to last until the iWRS product water could no longer be 
maintained at the required potable standard (see the target quality values in the Advanced 
Water Recovery System sidebar). This non-potable end point occurred when the quality 
of the water from the last of the three ion exchange beds rose above a pre-defined level of 
TOC concentration. The test configurations were:  

• 2 person, 24 hour operation; 2 person, 24 hour operation with condensate rejected 
to the feed tank to reduce the loading on the ion exchange beds;  

• 4 person, 24 hour operation with condensate rejected to reduce the loading on the 
ion exchange beds; 2 person, 18 hour operation (allowing six hours for maintenance);  



• 2 person 18 hour operation with condensate reject.  
Each test point called for either different flow rates or full/partial reject of internal 

flows or both. Besides rejecting AES condensate, four person or 18 hour operations 
required the RO and BWP to process water at an increased rate, with some of the RO 
permeate being returned to the BWP feed tank during the highest conductivity periods in 
the cycle. 

The test team began the first test point in January of 2001.  Soon they found that the 
ion exchange beds were performing so well that instead of thirty to forty days, a test point 
might take three months.  To reduce the length of the overall test to a manageable level, 
the water team resized the ion exchange beds to one third of their original size, and then 
restarted the test beginning with the first test point in March of 2001. 

On 25 December, the third ion exchange bed "broke through" for the last test point, 
marking the end of the test proper.  From January through mid-April of 2002 the team 
maintained the iWRS running in the first test point configuration to support a special 
antibiotic study by Texas Technical University. 

 

Control Results 
 
We consider the use of the 3T control system a resounding success of applied AI. The 
resulting software ran unattended for 98.75% of the test period (6684 of 6768 hours), 
averaging on the order of only 6 hours downtime per month (see the following section on 
Lessons Learned).  In an environment where the experimental hardware is being tested, 
this achievement is especially notable and can be explained by the combination of the 
modularity of our control design, and that fact that the upper layers of the architecture is 
written in Lisp.  In this section we discuss these two aspects of the control system results 
along with findings concerning autonomous, unattended operations. 
 
Advantages of Modular Design 

 
Calibrating instruments is an example situation of how the modularity of the 

design limited system downtime.  For each sensor and variable command output, e.g., 
pressure and pump speed, the skills had a linear equation to convert the A/D counts to the 
appropriate device value, e.g., pressure or RPM.  Over time the instrument outputs drifted 
from those calibrated values and had to be recalibrated, resulting in a new equation to be 
coded in the device skill, which then had to be recompiled.  Since the instruments were 
grouped by subsystem, we only had to bring down the given subsystem in order to restart 
the newly compiled skill, and then only for the few seconds required for the skill to 
reconnect to the IPC server. 

  Another situation that exploited the modularity of our design concerned a 
subsystem shutdown, for example, if the RO experienced a high-pressure event triggering 
an ASD.  With the RO down, there was no effluent being sent to the PPS and no brine 
being produced for the AES to process.  As described in the control section above, 
whenever the RO is not providing water to the PPS, the AES would send its condensate 
to the PPS.  Eventually, though, the condensate tank would empty and the AES would 
stop sending water to the PPS.  Without input water the PPS put itself in standby mode; 
without brine to process, the AES also put itself in standby mode.  Finally, without the 



RO drawing from the BWP, the level in the GLS of the BWP began to rise, causing the 
feed pump to slow down to compensate.  This compensation continued until the feed 
pump was at 0 rpm, effectively putting the BWP in standby mode.  Thus, all the 
subsystems responded to the down RO by eventually achieving a standby mode of 
operation. 

A similar situation took place when a subsystem was taken offline by the staff, 
such as when the AES wick was being changed out.  Each subsystem could be informed 
through the user interface as to the availability of the upstream and downstream 
subsystems, and would reconfigure itself accordingly. For instance, if the AES was down, 
the RO brine would be directed to an overflow tank, which would subsequently be 
pumped back to the AES reservoir when the AES was operational. If the PPS was down, 
the AES and the RO would redirect their effluent back to the feed tank or to drain, 
depending on the needs of the test. 
 
Advantages of RAPs/Lisp 

 
That RAPS is a plan interpreter, and that the higher layers are written in Lisp 

allowed us to make changes in subsystem operation on the fly.  In addition to changing 
set points and warning levels interactively, RAPs could be modified while the subsystems 
were in operation.  RAPS are stored in a plan library and instances are created and put on 
the task agenda as other tasks are removed.  So we could store modified RAPs in the 
library, which would then be picked up the next time the RAPs processing called for 
them.  An example of modifying a RAP concerned the operation of the AES condensate 
pump.  In order to maintain constant operation of the PPS for as long as possible, the 
AES condensate was pumped to the PPS whenever the RO was not sending its effluent to 
the PPS, e.g., when the RO is in purge mode.  Over the course of the test, this simple 
control scheme was expanded to include sending condensate to the PPS whenever the 
tank was full to prevent overflow, inhibiting condensate flow whenever the PPS output 
conductivity was too high, and modifying the full condensate pumping scheme whenever 
the test point called for rejecting the AES output to the feed tank. 

Often, new RAPs were required that were unanticipated at the beginning of the 
test.  New RAPs were tested with virtual skills in the AR&SD laboratories and then 
installed in the running system in the water laboratory.  An example of a new RAP was 
the one we created to augment the computation of the average and allowed TOC carried 
out by the PPS skills.  The average and allowed TOC are computed based on the TOC for 
increments of water volume deposited in the product tank, integrated over time.  They 
require both a measure of the instantaneous TOC reading, obtained from the TOC 
analyzer in the PPS, and the volume of water in the product tank, measured by a weight 
scale in the PPS.  Whenever the quality of the water from either the RO or the AES was 
low enough to trigger a high instantaneous TOC value, the PPS product water was 
redirected to the feed tank until such time as the quality dropped below that threshold.  
During that time, since no water was being deposited to the product tank, the average and 
allowed TOC were not updated.   

Early in the test, what few high TOC spikes the PPS experienced were of 
relatively short duration.  As the test wore on, however, the AES wicks and RO 
membranes began to degrade, the high TOC incidents became more frequent and lasted 



longer, and as a result, the TOC calculations were becoming less and less accurate.  We 
needed a way to calculate the volume of water that would have flowed into the product 
tank in order to update the TOC calculations.  Such a volume could be computed from 
the flow rates of the water coming from the RO and the AES, but since the PPS skills and 
the skills for the RO operated on two different computer racks, the PPS skills could not 
access the required flow rates.  The obvious solution was to have the TOC calculations 
performed by the sequencer -- which had access to the flow data in the AES and the RO 
as well as the instantaneous TOC readings -- during the time the product water was being 
rejected.  Once the average TOC dropped below the allowed TOC, the sequencer would 
redirect the PPS output to the product tank, and re-seed the PPS TOC calculations with 
the values computed during the low water quality time. 

One final aspect of the value of using the incremental compiler of Lisp is worth 
noting.  Frequently, in the early months of the test, the test engineers would desire 
additional information to be displayed on the main WRS monitor.  Examples of 
additional data displays not called for in the original design include the RO stage elapsed 
time (upper right of Figure 10) and the allowed and average TOC (lower left of Figure 
10).  Since the entire interface was written in Lisp (we used Macintosh Common Lisp 
(Digitool, 1996) running on a Power Mac G4), a control engineer could build, debug and 
install such changes to the displays online without disturbing the main control code. 

After the first month, the control code was placed under configuration control, so 
the types of changes described above were always discussed with the water team in a 
weekly tag-up meeting before being implemented.  Nonetheless, once the changes were 
approved, the water team appreciated the rapidity with which they were implemented. 
 
Staff Acceptance of Autonomous Systems 
 
The 3T control approach is designed for autonomous systems.  But in all previous tests, 
the ALS teams maintained 24-hour vigilance using three eight-hour shifts daily.  3T ran 

 
Figure 11 The GUI client for the BWP, showing the data broadcast from the BWP skill manager displayed on an 
analog of the BWP hardware.  The right-hand picture shows additional data that could be optionally displayed. 



autonomously in these tests, but since human presence was required for the non-
automated ALS subsystems, the ALS teams never had to relinquish total control to the 
software.  So early in the iWRS phase, as the hardware groups were setting their test 
goals, the controls group put forth a control goal of 95% unattended operations as a way 
of getting the water team to start thinking about autonomous operations.   During the 
BWP-RO functional tests, due to a faulty power supply on one of the controls racks (see 
Lessons Learned below), the water team manger did not feel confident to leaving the 
controls unattended over night.  As well, for the first two weeks, when all four systems 
were in test in January 2001, the water team manager allowed the controls team to 
monitor the system remotely during the workweek, yet still required a member of the test 
team to be present over night and on weekends.  But at the end of the first month, the 
water team allowed fully autonomous operations, and 3T remained in this configuration 
from February 2001 under the end of the test, 15 April 2002. 

Though autonomy was the order of the day, there was a need to adjust that 
autonomy at various times during the test.  As well, the water team's acceptance of non-
vigilant, fully autonomous operations generated several new requirements to support the 
water staff in their data management and analysis, giving rise to the need for a 3T 
controls duty roster and a distributed data management system.  We cover these issues in 
the following sections.  
  
Adjustable Autonomy 
 
Although the 3T controls for iWRS were able to run with full autonomy, during hardware 
build up, functional testing, and for the first three months of operation (January through 
March 2001), it was important that the test engineers be able to command the system or 
its subsystems at all levels of operation.  So we provided the test team with interactive 
interfaces we control engineers used for code testing.  These interfaces included 
commands for individual pumps, valves and relays, using primitive RAPs (see Figure 9 
for an example of a primitive RAP for turning a valve), commands to execute mid-level 
RAPs such as executing an RO purge, and commands to start or stop the autonomous 
operation of any subsystem, such as running the BWP in a stand-alone mode. 
 Being able to suspend parts of the control system's autonomy was important as 
well.  For example, mid-way through the test it became necessary for the BWP engineers 
to manually purge the individual tubes in the nitrifier portion of the BWP.  This purging 
often resulted in a low-pressure condition that would trigger a low-pressure ASD in the 
BWP control code.  To prevent the ASD during staff purge operations, we modified the 
ASD RAP to check the state of a RAP memory flag for staff purging.  When the flag was 
present, the ASD would put out the ASD warning but would take no action.  Then we 
added interactive text to the WRS display (see the "Purge By Staff" text in the upper left 
of Figure 10) that could be triggered to set the staff purge flag in memory and start a 
twenty-minute timer.  At the end of the twenty minutes, the timer code would remove the 
flag. 
 
Data Management & Distribution System 
 



Logging the data broadcast from the skills -- the sensed values and the commands sent to 
the devices -- was required to support data analysis by the staff both during and after the 
test.   We developed a graphical user interface (GUI) for each subsystem to display in 
analog form the data broadcast from the skills (see Figure 11), and also to set the logging 
rate for each subsystem.  Menu options on these displays allowed a user to view logged 
data, to setup strip charts, and to plot any data item being logged.   

These GUIs were run on computers in the water laboratory (see Figure 7), but 
since the controls for the iWRS ran unattended, the engineering staff of the water team 
desired to view these displays on their PC workstations in their offices.  In response to 
this requirement, we ported the GUIs to the Windows environments used by the staff and 
installed the code on their workstations. Using these GUIS, the staff could log data from 
any or all subsystems to their computers as they desired, while the logs of record were 
maintained in the water lab.  Throughout the test, new logging requirements from the 
water team changed the format of the data and also the variables displayed in the GUIs.  
The format of the logs allowed viewing from the GUIS, from a browser (see Unattended 
Operations below) and from Microsoft Excel, a favorite analysis tool of ALS engineers. 
To give the staff access to the latest GUI code, we made the changes available via a web 
page.  A prompt when a GUI started up would allow the staff to download the new code 
and to update their GUI display accordingly. 
 
Unattended Operations: Supporting Intermittent Monitoring 
 
Although the 3T control system ran unattended, the control team had to periodically 
monitor the system for power failure or hardware problems.  We set up a duty roster of 
3T control engineers to monitor the system.  Every six hours, every day including 
weekends, the control engineer on duty would check in on the system.  The engineer 
could start up the GUI clients on his remote computer and use a NASA dial-up 
connection to receive and view the data broadcast from the water lab.  We also made the 

  
Figure 12 A browser view of the broadcast data from the AES.  Data was normally recorded at 5 minute 
intervals. 



logged data available in columnar format at a NASA-JSC URL (see Figure 12) so that the 
on duty control engineer could monitor the system from computers without the GUI 
software.  
 The previous 91-day test marked our first experiences in designing displays to 
provide users of 3T systems with a view into the state of the monitored system and the 3T 
software.  At that time, we began developing an understanding of how to support 
intermittent monitoring of ALS systems (Thronesbery and Schreckenghost, 1998).  With 
the iWRS, we, as monitors of the software controls system, shared many of the same 
concerns as our intended users, the engineers monitoring the ALS hardware.  Our 
experiences with these 24/7 operations allowed us to expand our understanding of how to 
support intermittent monitoring. 
 
Maintaining System Awareness   
 
The subsystem GUIs (e.g., see Figure 11) helped the user maintain system awareness by 
providing a quick overview, the subsystem schematic, and additional details on demand. 
The more commonly desired data (tank levels, pump speeds) were displayed directly on 
the schematic, and additional information was available (units, human-readable device 
name, component values for a computed value) by clicking on the schematic component 
in question. 
 
Reviewing Performance History   
 
While monitoring data only intermittently, it was important for the iWRS engineers to be 
able to review performance history to detect system anomalies or indicators that an 
anomaly was developing.  The iWRS engineers were also in the process of determining 
efficient configurations of equipment that were also effective at recovering water for 
space operations.  To evaluate the performance characteristics of each test configuration, 
the water team made extensive use of the data logs to support anomaly detection and 
performance analysis.  The logs could be displayed in a table from the displays and 
variables could be plotted for viewing performance over time. 
 
Responding to Problems   
 
Intermittent monitoring requires not only that the intelligent system can function 
autonomously most of the time, but also that it is able to recognize when failures occur 
and to notify the human expert in a timely fashion. Initially, the GUIs subscribed only to 
device level data from the skill manager layer of 3T.  Consequently, the primary anomaly 
that could be detected was a loss of data connection between the skill manager and the 
GUIs, signaled by both audible and visual alarms. Later, the watchdog timers were 
added, which indicated the health of the communications between the skills and RAPs 
layers of 3T.  The user could then use an information pop-up to see how long the skills 
and RAPs had been out of contact with one another.  This information would also go to 
an error log, with timestamps allowing the user to examine performance history just prior 
to the anomaly. 
 



Accessing Reference Information   
 
From interactive parts of the GUIs, the user could display the skills specifications (see 
Figure 8), allowing operators to refresh their understandings of how the controls work 
and providing access to device nomenclature used in standard iWRS drawings used in the 
hardware specifications.  In addition, the lead controls engineer wrote up some very 
helpful operations notes which were used by the remainder of the controls team to assess 
the health of the software controls systems.  These operations notes were also available 
from the GUI schematics displays. 

 

 

Lessons Learned 
 
3T was designed for the intelligent control of autonomous robots, robots that never ran 
for longer than a few hours at a time.  Our experience in applying this architecture to long 
duration ALS control systems and the WRS 3T system in particular has given us insights 
into the key characteristics of ALS systems and implications of those characteristics for 
control. 
 
ALS Systems Have Long Response Times 
 
A key aspect of ALS systems is the slow event times associated with them.  In our WRS 
system, turning a valve took three or four seconds, the PPS oxygen concentrator took a 
minute and a half to come up to speed and several minutes to turn off, and the AES 
heaters took five minutes to heat the air circulating in the AES and upwards of ten 
minutes to cool down.  As a result, we developed our sequencer procedures as essentially 
a mixture of activation steps and monitors as opposed to the normal sequence of primitive 
enable and wait-for clauses.  When one of these long-term events, e.g., waiting for the 
oxygen concentrator to become operational, failed, it was often due to the fact that over 
the length of the test, the device was just taking several seconds longer to activate.  We 
became quite adept at recognizing this "activation drift" as the test went on.  

Related to the long activation response times is the fact that the WRS system level 
events occurred on the order of hours or days. So to find out if a system level change was 
having the desired effect we often waited for days or weeks.  An example of this had to 
do with determining the optimum number of RO cycles before having the controls 
perform a membrane slough.  An RO cycle typically completed every four and half 
hours.   At the beginning of the test, the system was directed to slough the membranes 
every eight cycles, or every 36 hours of processing.  As the test continued, the quality of 
the RO output water, called the permeate, tended to be worse toward the end of the last 
two cycles.  This suggested requiring a slough more often.  It took the team over a week 
and a half of experimenting to determine that the number of cycles-to-slough should be 
set to four to keep the permeate quality consistently high. 

Yet, sometimes, the control system had to "catch" fast moving events.  For 
example, in determining the optimal number of cycles between sloughs the RO engineer 
needed to correlate the permeate water quality with a count of how many sloughs had 
taken place.  A slough took no more than four minutes to execute, but while the skills 



broadcast the data every 15 seconds, the data was logged at five minute intervals to 
minimize the amount of data required for analysis (of the WRS system events, only the 
RO slough event took less than five minutes to occur).  So the slough indicator -- the RO 
recirculation pump running in reverse at one third the normal RPM -- was often missing 
from the logs. To assist the RO engineer to quickly determine the number of sloughs that 
had occurred without having her scan through days of sequencer tracking logs, we built 
an event detector into the RO GUI which detected the indicator using the fifteen second 
data, but set it as a yes/no flag for the five minute log.  This detector turned out to be 
important, since with a new membrane or with varying amounts of RO water being 
recycled in different test points, a new cycles-to-slough value had to be determined as 
often as every month. 
 
ALS Systems Are Complex When Integrated 
 
With the possible exception of the BWP, we have found that individual ALS subsystems 
are relatively straightforward to control.  They normally require a startup procedure, 
several actuator check monitors (such as one to insure that the RO recirculation pump 
doesn't start before the feed pump), an ASD monitor and a shutdown and/or standby 
procedure. 

When several subsystems are integrated, however, the complexity increases and 
the need for look-ahead reasoning, such as the crop rotation scheduler for the 91-day 
human test discussed earlier, becomes evident. 

Our loosely coupled agent approach obviated the need for automated generative 
planning to achieve integrated control of the iWRS, but it did give rise to more complex 
RAPs code to handle the increased number of contexts, or system states that could arise.  
For instance, the procedure that managed the level in the AES condensate pump 
discussed earlier, required only two methods (the number of methods roughly equates to 
the number of system states of concern for that procedure).  But integrating the AES with 
the rest of the WRS required an additional five methods and a rewrite of the original two. 
 
Long Duration Systems Have Their Own Problems 
 
By their very nature, ALS systems are long running, carrying out their prescribed 
processing for weeks or months.  When anomalies occur they are rare, but must be 
detected and processed to prevent often catastrophic results.  In developing and 
maintaining the iWRS 3T system, we have come to understand several control 
implications of this long duration characteristic of ALS systems. 
 
Equipment will degrade.   
 
During the twelve months of iWRS operation we witnessed the slow degradation of 
pressure transducers, flow meters, a dew point sensor, the AES blower and the main RO 
feed pump.  Sometimes the ultimate failure brings the test to a halt, such as in the case of 
the RO feed pump.  With the other equipment, the degradation is gradual and difficult to 
detect, since the symptoms are often intermittent.  The point is that it sometimes takes 
months for the degradations to occur, and neither the water team nor the controls 



engineers had the experience to determine if the various problems stemmed from 
software or hardware.  We had few utilities in place to help us capture the intermittent 
events and spent much time in each instance adding trace code and studying the results.  
After about six months, we became familiar with character of each of the subsystems and 
were able to more easily ascertain the cause of these types of anomalies. 
 
Automation has to last longer than the hardware.   
 
Besides loss of WRS hardware, we had to replace almost every computer used in the 
control system including the power supply in one of the VME racks.  Disk failure and 
memory problems were easy to detect and repair, but the power supply problem taught us 
a fundamental rule about user acceptance of automation in long duration systems: the 
automation must last longer than the hardware.  What we mean here is best described by 
the situation surrounding the loss of the power supply.   

The microbes in the BWP could not go longer than five or six hours without being 
"fed", i.e., having feed water circulating around the colonies.  The power supply to the 
rack controlling he BWP began to fail during the BWP-RO phase of testing in the spring 
of 2000.  Early on, the only indication there was a problem was that the rack CPUs would 
reset, zeroing the pump speeds, thus halting feed water to the BWP.  When this happened 
after the last human check around 11 pm nightly, the water laboratory personnel would 
arrive in the morning to find the colonies destroyed.  The first failure required a two-
week re-inoculation of the BWP; as a result, the team assigned humans to monitor the 
control system around the clock.  It was not clear why the CPUs had reset, and once the 
software was restarted the system ran for days before another reset occurred. 

After experiencing more frequent resets over a weekend, the water team decided to 
take both subsystems "off controls" and run them manually, that is, all actuators running 
open-loop.  The team decided that the chance of a BWP or RO hardware failure was far 
less likely than a catastrophic control failure.  Even after the control team replaced the 
power supply -- which is still operational as of this writing -- the water team did not put 
the subsystems back "on controls" for two weeks and did not cancel the around the clock 
personnel shifts until the control system "caught" a hardware failure -- a failed BWP 
nitrifier pump -- two weeks later. 

 
All software will have memory leaks.   
 
Most software developers delivering an application will write their code carefully enough 
to make efficient use of resources.  But there may be inefficiencies in the resulting code 
that will not appear with the normal amount of debug testing.  Such inefficiencies have a 
cumulative effect and will not make themselves felt until after weeks of operation.  We 
discovered that all the software we developed and installed in the water laboratory 
"leaked" memory, that is, the code was using small amounts of memory resources with 
releasing those resources.  Memory leaks were discovered in the skill managers, the IPC 
clients and in the sequencer.  The lesson here is where possible run the code with 
memory metering wherever possible for several days before delivery to detect memory 
leaks. 

 



Safety shutdowns are required at the subsystem level.  
 
No matter the number of precautions taken to prevent system failure, there was always a 
set of variables outside of our control.  Chief among these were network problems and 
power failures.  We discuss the former here and the latter in the next section. 

Every six weeks or so, over the course of a twelve-month test, we experienced 
random faulty data packets.  These would produce a data set that would cause the 
sequencer to break and thus stop reading IPC messages.  This event inevitably occurred 
after the last check by the control engineers (typically around 11 pm), and before the 
laboratory personnel arrived in the water lab six hours later.  With the sequencer down its 
messages would build up in the IPC server and after about an hour, the server would 
crash, bringing down all clients connected to it, including the logging GUIs and the skill 
managers.   

When the skill managers died they left the last settings on the pumps and valves on 
the A/D boards.  In two instances, the failure occurred while the condensate pump was 
on, and when the BWP controls were in the middle of adjusting the GLS level and the 
feed pump was running lower than usual.  In the former case, the condensate pump 
pumped the tank dry and started pushing air into the ion-exchange beds of the PPS, 
requiring a shutdown and a manual repacking of the beds.  In the latter case, the GLS was 
pumped dry by the RO action and the RO drew air from the BWP GLS at high pressure 
into its membranes, rendering them useless. 

The solution to these network failures was to make the skill managers aware of the 
loss of communications with the sequencer and execute a safing of their respective 
subsystem.  We developed the idea of a watchdog timer in each skill manager.  If the 
elapsed time since the last sequencer communication was greater than a predetermined 
time (we used five minutes), the skill manager would put its subsystem in a protected 
state, e.g., the AES skill manager would turn off its heaters and the condensate pump; the 
BWP would reconfigure itself to stand alone and turn both the feed and effluent pumps 
off.  We also made the loss-of-RAPs-communications an IPC message broadcast by the 
BWP skill manager to the user GUIs. The watchdog timers, instituted soon after the 
restart of the first test point, protected the iWRS from network failures through out the 
remainder of the test.   
 
Logging state memory makes for faster, less error prone restarts.  
 
We experienced loss of power to the water facility five or six times during the course of 
the test.  In these instances, the valves would remain in their last commanded state but all 
pumps would be turned off.  The primary dilatory effect was the loss of the bacteria 
colonies in the BWP if the feed water was not restored to the BWP in a timely manner.  
Since the staff had learned to resuscitate the bacteria after the worst-case time lapse (a 
power failure after the last check at 11 pm with the lab staff not arriving until 4 or 5 am), 
a power failure posed little problem. 

However, the loss of power as well as the numerous times the iWRS had to be 
halted due to hardware failure -- about twenty-five times during the course of the test -- it 
became important to be able to restart the system quickly, without having to manually 
determine the state the system was in before the power loss or the hardware failure.  So 



we wrote a RAP to log the internal state of the iWRS every thirty seconds.  When the 
staff restarted the system, the sequencer read the last state of all the subsystems and 
determined how to resume operations.  This was possible because 1) Each primitive 
checks the condition of the valve or pump before commanding the device, and 2) the 
RAP executive will skip steps in a procedure that have been obviated by outside or 
serendipitous events.  Thus to restart the RO for example, the sequencer might determine 
from the logged state file that RO was last stopped twenty minutes into its secondary 
phase, set the valve configurations for secondary if they were not left in that state, check 
to see that all the pumps are on for secondary operation, advance the phase timer to +20 
and resume monitoring secondary phase processing. 
 
Support for Intermittent Monitoring 
 
Because the software development resources were limited, we were unable to try a 
number of advanced automation techniques to support intermittent monitoring of iWRS 
and software controls systems. While the combination of flow paths, alarms, and data 
values in the GUIs were helpful in gaining a quick overview of the system, it would have 
been more valuable to have information from the upper tiers of 3T, so that the GUI 
information could integrate high-level data with the observed device performance data 
(Schreckenghost and Thronesbery, 1998).  We had two opportunities to explore this idea, 
both involving the BWP sloughing operations. 

When iWRS engineers wanted to know when automated sloughing took place so 
they could monitor it during initial deployment, we had RAPs broadcast a sloughing 
message and then integrated device level data to accompany that communication.  This 
integrated information was not only available in the GUI and in the log, but it was also 
sent to subscribing email addresses.  

In an experiment conducted toward the end of the test, we had RAPs broadcast to 
a web accessible data base information from the RAPs procedure tracking log, a file used 
in the water laboratory for controls debugging.   The experiment lasted two weeks, at a 
time when we experienced no important anomalies, nonetheless, our experience showed 
that just as the procedure tracking log was used regularly during the course of the iWRS 
tests in the water laboratory to determine the cause of anomalies, the web-based tracking 
log information made possible similar activities remotely.  



 

The Best AI Win 
 
The most rewarding experience in the two-year iWRS came when one of the biological 
engineers asked the control team to use the top tier of 3T to help them with a particularly 
troublesome aspect of the BWP.  The nitrifying portion of the BWP (see Figure 13) 
consisted of bacteria that grow on the insides of eight sets of coiled tubes through which 
feed water flowed.  The microbial biofilm in the tubes would grow over time constricting 
the passage of water and air through the tubes and increasing the pressure in the tubes.  If 
left unchecked, the tubes would clog.  When a tube clogged, the water flow increased in 
the other tubes causing higher than normal pressures that could shear healthy biofilm 
from the walls of the tubes, thus decreasing the nitrification action of the reactor.  To 

 
Figure 13 Symbiotic biological reactors. Feed water flows from the packed bed on the right through the 
nitrifier (eight 300' coils of thin tubes on the left and to the rear), through the GLS (not shown) and back 
to the packed bed. The nitrifying reactor contains bacteria that use oxygen gas (O2) to break down the 
ammonia (NH4) in the feed water into nitrates (NO3) and nitrites (NO2).  Bacteria on the ceramic saddles 
in the packed bed remove organic carbons from the feed water using oxygen from the nitrate and nitrite 
molecules provided by the nitrifier. The resulting nitrogen and carbon dioxide gases are released in the 
GLS.  



prevent the tubes from clogging, the water team laboratory personnel had to periodically 
slough the biofilm by manually raising the airflow through each tube to maximum for 
several minutes until the pressure dropped to a nominal level.  As the maturing biofilm 
continued to grow the tubes needed sloughing more frequently.  Eventually, the staff was 
required to come in at night and on weekends to carry out the sloughs.  If the staff forgot 
or was late in sloughing a tube, as happened on a number of occasions, clogging was the 
inevitable result.  Soon the manual procedures could not keep up with the number of 
sloughs required. 
 About midway through the test, the subsystem engineer for the BWP approached 
the controls group to inquire if the third tier of 3T could possibly help automate the 
sloughing process.  That the engineer understood the usefulness of the top tier in relation 
to the other tiers indicated that the water team had understood the basic concepts behind 
the 3T architecture.  Of course, this was a simple scheduling problem.  We constructed a 
scheduler that once an hour checked the pressure in each tube against a maximum 
allowable pressure for that tube, sorted the tubes according to this pressure difference and 
the time since the last slough for each tube, then invoked a new RAP that raised the air 
flow rate for a specified period to force a slough just as the human staff did in the 
previous manual mode.  The scheduler interface (see Figure 14) allowed the staff to 
adjust each tube's maximum pressure.  By having the sequencer broadcast the schedule 
information, we made the schedule details part of the BWP display GUI as well as the 
data logs. 
 Toward the end of the last iWRS test point run, 3T was sloughing one tube an 
hour day and night.  Eventually, the air sloughs were insufficient to bring the pressure 
down in a few of the tubes, so periodic manual assistance was required with the staff 
cleaning the nitrifier trap filter and releasing pressure through manual valves positioned 
throughout the tube lengths.  Nonetheless, without 3T's auto-slough the water team would 
not have been able to maintain a viable BWP after the first half of the iWRS test. 
 



Spin off Benefits for the AI Community 
 
Since 1995, the authors and their colleagues at the Texas Robotics and Automation 
Center Laboratories (TRACLabs) and NASA-JSC as well as a number of research groups 
around the country have seen a number of areas where AI investigations can help with 
problems we have encountered in support of ALS operations.  Such investigations have 
included planning and scheduling (Schreckenghost et al., 2000), adjustable autonomy 
(Schreckenghost et al., 2001), human centered computing (Dorais and Kortenkamp, 
2001) and machine learning (Kortenkamp et al., 2001a). 
 The two-year iWRS test has also spawned a number of research efforts.  Here is a 
list of the past and ongoing work inspired by the iWRS efforts: 
 • Evaluating the Application of Machine Learning to the Control of Advanced 
Life Support Systems.  The participants were NASA-JSC, NASA-Ames, Rice University, 
CMU, MIT and the Naval Research laboratories.  Researchers at Rice and JSC identified 
the periodic nature of optimizing coupled life support systems and evaluated techniques 
for dealing with such systems. (Kortenkamp et al., 2001a).  Recent efforts have focused 
on using logged iWRS sensor and control data to automatically build models of system 
behavior, which can then be used to monitor for off-nominal operations. 
 • Developing a Suite of Visualization Tools for Distributed Autonomous Systems.  
The participants were CMU and members of TRACLabs.  Using logged data from the 
iWRS, researchers developed a set of analysis and display tools that allow a user to 
manipulate the data and look for relationships (Kortenkamp et al., 2001b). 
 • Distributed Crew Interaction.  The participants are NASA-JSC and Ohio State 
University.  The objective is to investigate knowledge representations and architectures 
for distributed collaboration among human and software agents  in support of automated 
life support control, in particular the 3T iWRS system (Schreckenghost et al., 2002). 
 • Complex Event Recognition.  Participants are TRACLabs and I/net, Inc. Using 
iWRS data, the project seeks to develop software tools for detecting and storing 
information about important control events. 
 • Robust Methods for Autonomous Fault Diagnosis and Control of Complex 
Systems. Participants are Vanderbilt University and NASA-JSC.  The objective of this 

 
Figure 14 The nitrifier slough interface.  The water staff could set the maximum pressure (PressMax 
column) for each tube.  The scheduler obtained the instantaneous pressures from the BWP data broadcast 
message. 



project is to use probabilistic methods to diagnose failures in complex systems  (i.e., the 
iWRS) and adapt controllers to recover from those failures.  

Finally, data and information concerning the iWRS is available to AI community 
at large.  Several simulations of the iWRS subsystems exist (e.g., (Malin et al., 2002)),  
and the iWRS control code, and data logs for the entire test are available to any interested 
party (contact Pete Bonasso at r.p.Bonasso@jsc.nasa.gov). 
 

Summary and Future Directions 
  
After three years of grafting parts of 3T to various ALS systems, the integrated WRS test 
gave us an opportunity to prove the usefulness of the entire intelligent control 
architecture in a long running application.  The test is over, but we have learned many 
useful lessons concerning autonomy, unattended operations and long duration control.  
While much of the hidden power of 3T may have eluded the water engineers, we feel we 
validated the need for AI in this test when the test team requested an automatic scheduler 
for the nitrifier sloughs. 

Based on our experience with the iWRS, we claim that long-running, unattended 
autonomous operations will be the norm for ALS systems in the future.  There are several 
implications of this claim, which give rise to a number of interesting research issues that 
should be pursued.  While one can imagine the whole range of AI technologies being 
relevant in this area, we list a few which stood out to us during this test: 

 
• Providing commanding capability from remote locations.  Because of security 
reasons we did not investigate executing iWRS procedures from outside of the 
water laboratory.  Yet a number of times it would have been convenient for the 
members of the control team or even the water team manager to be able to restart 
a given subsystem from their home or desk.  Remote commanding gives rise to 
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Figure 15 The interacting subsystems of an advanced life support 
system  (Kortenkamp et al., 2001a) 



issues concerning authorization and authentication, managing conflicting 
commands from two or more authorized users, and providing timely feedback to 
the user as to the results of his command.  The distributed crew interaction project 
mentioned above (Schreckenghost et al., 2002) is currently investigating these 
issues. 
 
• Planning & scheduling complex ALS operations.  The iWRS is but one of 
several systems which make up a complete life support facility for either space or 
planetary crews.  Each of the systems in Figure 15, for example, represents the 
same or greater level of complexity as the iWRS.  Such an ALS system will 
require generative planning capabilities that must allow for interaction by the test 
team or by the crew in eventual deployed applications. (Schreckenghost et al., 
2000). 
 
• Machine learning. We discussed above the natural drift of instrumentation, the 
need to adjust the controls to accommodate new wait times or set points and the 
need to detect anomalies in the iWRS subsystems.  With the large number of 
systems anticipated for a full ALS, a human crew/test team will be hard pressed to 
keep track of these changes without automated assists.  Machine learning 
techniques will be necessary to provide those assists, particularly since the human 
crew/test team will not be monitoring the systems in situ and thus will not be as 
familiar with what constitutes normal data values as they would if they kept close 
watch on such systems. 
 
• Natural interfaces for control.  Because users of future ALS systems will spend 
little time in front of a control console, they will tend to forget how to interact 
with those multiple interfaces such as the one shown in Figure 10.  This aspect of 
unattended operations points to the need for more natural interfaces, ones that are 
multi-modal, flexible and with which the user can enter a dialog for discussing the 
state of the system and any actions which may need to be taken 
 
• Smart data interfaces.   As alluded to in our lessons learned, while the analog 
data displays and their associated data logs (see Figure 11 and Figure 12) made it 
possible to detect problems in the iWRS, the process was still time consuming, 
particularly for system changes that were almost imperceptible without a historic 
trace of data values.  For a full, unattended ALS system, interfaces which quickly 
show recent trends that will catch the user's eye, and then easily guide her to the 
particular data source will be mandatory.  As well the high-level information must 
be combined with related device level log data into an integrated situation so that 
all related information is available to the user for inspection in one place 
(Thronesbery et al., 1999). 

 
• Distributed human interaction.   With future ALS systems only needing 
intermittent monitoring, human-computer interaction will take place from 
locations remote from where the automation executes.  Our simple foray into 
notifying remote users about the nitrifier slough must eventually be extended not 



only to all off-nominal events, but also to any event individual users might find of 
interest. It is likely that our simple GUIs and ad hoc event detectors should grow 
into full-fledged proxy agents for each user, e.g., as in (Chalupsky et al., 2001). 
Our iWRS notification work is continuing in (Schreckenghost et al., 2002) with 
software proxies and an analysis of notification schemes.  

 
We believe the ultimate goal for AI in life support is to allow the ALS systems to run "in 
the background" as it were, just like earth bound residential climate control systems.  
When humans must intervene the intelligent control system will guide him easily and 
quickly to the source of the problem.  Our experiences with the iWRS show that AI can 
make significant contributions today in ALS systems, but there is still much work to be 
done for the future. 
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