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Abstract. Today’s robotics applications require complex, real-time, high-
bandwidth sensor systems. Although many such systems have been devel-
oped, integrating them into an autonomous robot architecture remains
an area of active research. In this chapter we describe our behavior-
based active stereo vision system and how we integrated this system into
a hybrid reactive/deliberative robot control architecture. The integrated
system is used to perform tasks such as pursuing moving agents and
attending to several agents at the same time.

1 Introduction

Our goal is to build a mobile robot that can interact with people to help them
perform tasks. This interaction must be natural and driven by the robot’s own
autonomous goals and behaviors. We believe that this can only be accomplished
by coupling a real-time, high-bandwidth sensory system with an intelligent con-
trol architecture. If either is lacking, the robot will not be capable of performing
interesting tasks in complex and dynamic environments. Many important re-
search issues can be explored with a coupled system of this kind, including;:
integrating independent motion of the robot’s head, torso and wheels; deciding
which aspects of robot motion are controlled by which software elements; and
using active vision techniques to abstract critical information from the high-
bandwidth sensory system in real-time.

The mobile robot system described in this chapter uses a stereo-based active
vision system to accomplish several different tasks, including pursuing other
agents and obstacle avoidance. The vision system and the mobile robot are under
the control of an intelligent control architecture, which can interpret sensory
data in task contexts. This integration of high-bandwidth sensing and intelligent
control produces a highly reactive, goal-driven robot system.

1.1 Approach overview

Metrica Incorporated has, over the last several years, developed a real-time,
active stereo vision software that provides fast and robust disparity information



[14, 15]. Our innovative method concentrates system resources in cubic volumes
of space which we call proximity spaces. Within the bounds of this space an
array of stereo and motion measurements are made in order to determine which
regions of the space are occupied by surface material, and what the spatial and
temporal disparities are within those regions.

Metrica Incorporated has also developed an intelligent robot control architec-
ture called 3T [4]. The architecture combines a reactive control subsystem with a
deliberative planning system, both mediated by a middle layer sequencer based
on the Reactive Action Packages (RAP) system. This allows for long-range plan-
ning to take place while, at the same time, the system can react to immediate
environmental events.

We believe that the proximity space method is particularly well suited for
integration into the 3T architecture. Each proximity space acts as a virtual
agent, designed to achieve localized perceptual goals. To support more complex
robotic tasks, sets of proximity spaces can be organized to act in unison to
reveal the most pertinent information about the structure of the environment.
The 3T architecture is designed to organize, prioritize, and budget perceptual
skills such as those of a proximity space. Sets of proximity spaces fit ideally into
this architecture at the lowest level of the architecture in the form of skill sets.

1.2 Related work

Since our work integrates active vision and intelligent architectures, we will look
at related work in both of these areas and in the area of integrating perception
and intelligent architectures.

Active vision The active vision paradigm was espoused by Ballard [2] as a
way to overcome the computational complexity of reconstructing a scene from
a single image. In active vision, only a small portion of the visual field of view
is analyzed at any given time and this analysis is performed many times per
second on successive frames of the image. Early active vision systems [18] were
promising, but typically too brittle and slow for practical application. In 1992
Keith Nishihara developed the PRISM-3 high speed stereo vision system [20], an
embodiment of his Laplacian of Gaussian sign correlation theory, which itself is
an extension of Marr and Poggio’s classical zero-crossing theory [19]. Our work
in this proposal builds directly on the work of Nishihara.

Hybrid architectures Hybrid architectures refer to the class of robot architec-
tures that attempt to integrate reactivity and deliberation. A first step towards
the integration of reaction and deliberation was the RAPs system of Jim Firby
[9]. In his thesis [10], we see the first outline of an integrated, three-layer archi-
tecture. The middle layer of that architecture and the subject of the thesis was
the Reactive Action Packages system (RAPs).

Independently and simultaneously, Pete Bonasso at MITRE, unaware of
Firby’s work, devised an architecture that began at the bottom layer with robot



behaviors programmed in the Rex [21] language as synchronous circuits. These
Rex machines guaranteed consistent semantics between the agents internal states
and that of the world. The conditional sequencer was a reaction plan [22] im-
plemented in the GAPPs language [16], which would continuously activate and
deactivate (set enabling “wires” to high states and low states) the Rex skills
until the robot’s task was complete. This architecture was used successfully in a
number of experiments with underwater robots [3].

An alternative hybrid architecture to integrate deliberation and reaction was
also being proposed by Erann Gat at the NASA Jet Propulsion Laboratory
for control of a Mars rover. This architecture was called ATLANTIS [12] and
contained RAPs and robot behaviors written in Gat’s Alpha circuit language.
Numerous other tiered architectures have been developed, Bonasso et al [4] gives
a comprehensive overview of many of these and compares them to 3T.

Integrating perception Agre and Chapman [1] presented a novel integration
of perception and action using markers in their Pengi system. Their system and
ours differ in that their agent operated from a 2-D overhead prospective with
no occlusion and no early vision (they directly accessed their simulation’s data
structures). Our approach operates from a 3-D first person perspective and must
deal with issues of occlusion, a limited field of view, and early vision.

Jim Firby et al [11] have proposed an architecture for vision and action
that uses the RAPs system (the middle layer in our architecture). They have
successfully incorporated gesture recognition and color histogram-based object
recognition into their robotic tasks. A three tiered architecture at the University
of Virginia [23] has incorporated perceptual markers into the bottom two tiers.
Their use of markers is very similar to what we propose in our architecture. Ian
Horswill has also looked at integrating vision and architecture [13] within the
context of a purely behaviorist system.

2 A Behavior-based Approach to Active Stereo Vision

In order to efficiently process the enormous amount of information available
from stereo cameras, we use techniques that have recently been developed by
the active vision research community [2, 7]. In particular, we address the issue
of gaze control, i.e., where to focus attention and visual resources. Figure 1 gives
an overview of the software modules comprising our vision system. To sum-
marize the figure, left and right images enter the system from the cameras. A
Laplacian of Gaussian convolution is performed on the image data streams as
they are simultaneously acquired. Only the sign of the LOG output is stored
in memory. Then, a search is performed in which a patch from the left LOG
image is compared with a portion of the right LOG image, producing correla-
tion measurements. This search produces a series of correlations from which the
strongest (the “peak”) is chosen as the best. At the same time, the right LOG
image from the frame before is compared with the current right LOG image to
measure motion. This correlation data is used to assess information within a
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Fig. 1. The software modules comprising our vision system, with arrows denoting flow
of information. Large arrowheads represent data flow, small arrowheads represent com-

mand flow.



bounded volume of space called a proximity space. Each proximity space is con-
trolled by a set of behaviors and, possibly, by a constraint model. The location
of the proximity space within the field-of-view is used as a reference to control
the pan-tilt-verge head. Visual skills interpret the proximity space location with
respect to the task being performed. Each of these will be described in more
detail in the following sections.

Fig. 2. A stereo pair of LOG images with the proximity space.

2.1 Key components

The key components of our active stereo vision system build upon each other.
At the lowest level is convolution.

Convolution The left and right grayscale images are convolved by a Lapla-
cian of Gaussian (LOG) operator as they are acquired. In order to minimize
computation, a 7x7 pixel LOG kernel is approximated by decomposition into a
3x3 Laplacian kernel followed by two 3x3 Gaussian kernels. Only the sign of the
LOG is retained after the third stage of convolution. Sign of LOG convolution
normalizes the image and brings out salient features.

Patchwise Correlation The foundation of our approach is the correlation of
two dimensional regions (patches) of binary LOG images. These patches are
matched pixel for pixel using an XOR, operator and the total number of matches
are summed. The correlation sum for a pair of patches is normalized to produce
a net value between zero and one. White noise images will typically correlate
half of the time thus producing correlation values fluctuating around 0.5.
Proximity spaces are composed of large numbers of patchwise correlations
between two images. In order to search for surface material (visually textured



regions of an object) within a given volume correlation is performed between
patches in right and left images. Right and left camera images, which are taken
from different perspectives, provide the foundation for 3D stereo measurements.
In order to determine the motion of surface material, correlation is performed
between patches in the current and previous images from the same camera.

Fundamentally, the number of pixels that correlate between two images gives
some clue as to the likelihood that the same surface region is imaged in the each
of the two patches. The larger a patch is, the greater the likelihood that it will
uniquely correlate with its “true match” in the other image. Larger patches
require more computation to correlate and smaller patches are more likely to
miss match. In order to find an appropriate match, a number of equally spaced
patchwise correlations are performed.

Correlation Stacks Object surfaces can be searched for, in three dimensions,
by performing a number of patchwise correlations between right and left image
pairs. If a patch is chosen in the right image (reference image) it can be searched
for in the left image (search image). For stereo measurements, the reference
image patch is correlated against patches of equal size in the search image.
Search patches are sampled a regular intervals horizontally in the image. The
difference between a patch’s horizontal location in the reference image and the
horizontal location of the patch it correlates best with in the search image, is
referred to as the search disparity. The disparity of a search relates directly
to the distance between the imaged object and the camera pair. Thus a set of
stereo correlations made at a number of disparity intervals, constitutes a search
for surface material in depth. In this way correlations in 2-dimensional images
are used to provide 3-dimensional measurements in the real world. We call this
set of correlation measurements, a correlation stack (see Figure 3). How ordered
sets of these stacks are used to build a proximity space will be described in the
Section 2.1.

Evidence of surface material (an object) within a stack is determined by
analysis of its correlation values. This set of correlation values reveals much
about the environment within a stack. Analysis of this data usually begins by
finding the greatest correlation value. The greatest correlation value is further
tested to determine if it reveals a adequate “peak” in the correlation set. The
peak is interpolated to refine its value and disparity to sub-pixel accuracy. This
peak value is then filtered to ensure that it is ”strong”. Correlation values near
the peak value are also analyzed to ensure that the peak is “distinct.” The highest
peak is then compared to the next highest peak in the set in order to ensure
that it is “unique.” This filtering process dramatically improves the reliability of
correlation matches by reducing the effects of noise and repetitive structure in
the environment. Filtering, as well as all other aspects of the correlation process
compose the inner workings of the proximity space providing a useful abstraction
to the intelligent control architecture.
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Fig. 3. Composition of a 3D proximity space from a series of 2D correlation measure-
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The proximity space can be used as a 3D perceptual agent.



Proximity spaces As a means to focus attention and ensure a high degree of
reactivity to the environment we developed a method in which all of the visual
processing is confined to a virtual, three-dimensional region of space called the
Prozimity Space (PS). The proximity space is composed of an arrangement of
correlation stacks. The stacks are sized and shaped to give the proximity space
a desirable 3D form. For the generic tracking and obstacle avoidance behaviors
desired in this project, the proximity spaces were typically spherical or oblong
(sausage-shaped). This shape was approximated by placing a ring of eight narrow
stacks around a single stack of slightly greater length. Within the bounds of the
proximity space, each stack continuously provides feedback indicating whether
it is occupied by surface material. Surface material within a stack is identified by
peaks which meet the strength, distinctiveness, and uniqueness criteria described
above. If occupied, a stack provides further information describing its degree of
occupancy; the disparity of its surface material; and possibly a 2D motion vec-
tor (via patchwise motion correlation). Confining our measurements to limited
volumes of space ensures that they remain focused and limited in number.

Another important aspect of the PS method is that it enforces continuity for
attentive control as successive image pairs are processed. The flow (movement)
of visual texture and its distribution within the space is used by active sets of
behaviors which competitively influence the motion of the space through time. In
dynamic terms, the PS acts as an inertial mass and the behaviors as forces acting
to accelerate that mass. The utility of this characteristic will become apparent
in the following sections.

2.2 Proximity space behaviors

One of our main objectives is to develop a method for gaze control that allows
us to acquire and track natural salient features in a dynamic environment. Using
the proximity space to focus our attention, we developed a method for moving
the proximity space within the field of view. This method is inspired by recent
research into behavior-based approaches [6], which combine simple algorithms
(called behaviors) in a low-cost fashion.

In our system, each behavior assesses information within the proximity space
in order to influence the future position of the proximity space. The information
being assessed by each behavior is simply the texture-hits and texture-misses
within the proximity space. Based on its unique assessment, each behavior gen-
erates a vector, the direction and magnitude of which will influence the position
of the proximity space. With each image frame, the behavior-based system pro-
duces a new set of assessments resulting in a new set of vectors. When a number
of behaviors are active concurrently, their vectors are added together to produce
a single resultant vector, which controls the position of the proximity space. We
have developed a set of gaze control behaviors:

— Follow: This behavior takes an average of several correlation-based motion
measurements within a proximity space in order to produce a 2-d vector in
the direction of motion.



— Cling: This behavior is attracted to surfaces and produces a vector that
tends to make the proximity space “cling” to them.

— Avoid: This behavior is repulsed by surfaces and produces a vector that
tends to make the proximity space stay away from them. This behavior is
particularly useful as a front end for obstacle avoidance.

— Lead: This behavior pushes the proximity space towards the intended path
of the mobile platform. It also biases the proximity space to maintain a
standoff distance from the mobile platform.

— Migrate: The migration behavior influences the proximity space to traverse
a surface in a fixed direction until it reaches the surface boundary where it
eventually runs out of material and “stalls.”

— Pull: This very simple but useful behavior produces a pull vector toward
the stereo head. This vector tends to move the proximity space toward local
depth minima.

— Resize: This behavior influences the size of the proximity space inversely
proportionally to its distance from the robot.

— Search: This behavior cause a proximity space to begin systematically
searching a given volume of space for texture. It is used to initially locate
the object to be tracked and also to re-acquire the object if tracking fails.

Based on the task we want to perform, we activate different sets of behaviors
with different parameters. The active set of behaviors determines the overall
behavior of the proximity space (or proximity spaces).

2.3 Eye/head coordination

The previous subsection discussed a method for moving the proximity space
electronically within the field-of-view. An important point, which remains to be
addressed, is how to move the head in pan, tilt and verge to keep the agent within
the center of the field-of-view of both cameras. In effect, as the proximity space
moves to track the agent, the fixation point of the cameras is moved to follow the
proximity space. Specifically, the pan-tilt-verge control reference is determined
by the relative position of the centroid of the proximity space with respect to
the fixation point. This is analogous to eye-head coordination in animals in that
the electronics provide for rapid but small scale adjustments similar to the eyes,
and the mechanics provide for slower but larger scale adjustments similar to the
way an animal’s head follows its eyes. This control scheme produces a smooth
and robust flow of attention.

2.4 Implementation of our active vision system

We have implemented our proximity space method on several different types
of hardware, including Pentium MMX, C80 processors and the Teleos Prism-3
vision system. All work described in this chapter was done using the Pentium
MMX system, except where noted. All of the coding was done in Microsoft
Visual C++ Version 5.0. Two M-Vision 1000 video digitizers from MuTech were



used to capture simultaneous stereo images being produced by two Pulnix 9701
digital CCD cameras. The two cameras were mounted on a Directed Perception
pan/tilt head.

2.5 Applications of our active vision system

Proximity spaces are simply a mechanism to measure certain attributes of the
image. They can be used for a wide variety of purposes. We have implemented
three different applications using proximity spaces: tracking, obstacle avoidance
and gesture recognition.

Tracking Tracking a moving agent is the simplest application of proximity
spaces, but it is a very important one. Tracking requires acquiring the agent,
tracking it and then re-acquiring it when it is inevitably lost. We describe each
of these in turn.

Acquiring the agent Before an object can be tracked it must be acquired. To do
this, the robot needs to search a given volume of space in an efficient manner.
This is achieved by mechanically moving the fixation point of the stereo camera
pair through large sweeping trajectories while quickly moving the proximity
space in search of substantial surface material (i.e., texture-hits in at least 50%
of the measurement cells) within the field of view. Once registered, the system
quickly establishes fixation on the surface and starts to track it. A key point of
this method is that the system does not require a model of an object in order
to acquire it, rather its attention is attracted to the first object that its gaze
comes across. The object also need not be moving to be acquired; acquisition
relies purely on the existence of surface texture.

Tracking the agent After acquisition has occurred, tracking the agent is done
using the Follow and the Cling behaviors. These two behaviors are run con-
currently and their resultant vectors are added to determine the next position of
the proximity space. An important point to note about this scheme for tracking
is that it does not require that the body be moving in order to track it. This
is because the motion disparity behavior is only one of several that combine to
maintain focus of attention on the agent. As long as the agent remains distinct
(depth-wise) from its surroundings, the robot will track it whether the agent
is walking briskly, sitting down, standing back up, even leaping around. The
system is, however, brittle to full occlusions because they tend to “pinch” the
proximity space between depth discontinuities until it finally loses track of the
body altogether. In that case, re-acquisition needs to take place.

Re-acquiring the agent The system described above, while robust, does periodi-
cally lose track of the agent. This condition is detected by monitoring the ratio of
texture-hits to texture-misses within the proximity space. When this value falls
below a certain threshold (about 30%) it indicates that the system has probably



lost track of the surface(s) it was tracking. If the system does lose track, it can
re-acquire in a manner identical to initial acquisition except that it may use the
additional information of the body’s last known velocity to bias the search.

Obstacle avoidance Obstacle avoidance requires a behavior which is opposite
of cling; we call this behavior avoid and its goal is to generate a vector away
from the net location of texture. As long as the volume within the proximity
space is not intersecting with surface texture (an object’s surface) this behavior
will not produce an effect. If an object does intersect with the proximity space,
avoid will act to alleviate the situation by influencing the proximity space to
move away from the object until it is again empty.

The fundamental idea then is to create a proximity space that is approxi-
mately as large as the robot (in all three dimensions) and place it a set distance
in front of the robot. As the mobile platform moves it “pushes” this proximity
space along in front of it. As it is being pushed the proximity space will avoid
objects and try to fit into gaps between objects using free path search (see Sec-
tion 2.2). As the proximity space does this it will guide the robot safely through
obstacles. In essence, what is happening is that we are “projecting” a virtual
robot represented by the proximity space, in front of the robot and having it
find a free path before the robot gets there.
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Fig. 4. Coarse 3-D model of a human used for gesture recognition. Four proximity
spaces were used in this application.



Gesture recognition Gesture tracking is a natural extension of the pursuit
work described in the previous section. However, instead of a single proximity
space, several proximity spaces are active concurrently. They attach themselves
to various body parts in the image of the gesturing person. Each of these prox-
imity spaces has its own set of tracking behaviors independently controlling its
location in space. However, these behaviors are constrained by a coarse three-
dimensional, kinematic model of a human that limits their range of motion.
With perfect tracking there would be no need for a model as the proximity
spaces would track the body parts in an unconstrained manner. However, real-
world noise may sometimes cause the proximity space to wander off of their body
parts and begin tracking something in the background or another part on the
body. While the behaviors acting on the proximity spaces continue to generate
motion vectors independent of the model, the final movement of the proximity
spaces is overridden by the model if the generated vectors are not consistent
with the model. The model is shown in Figure 4. This system, implemented on
the Teleos PRISM 3 hardware on a mobile robot, could recognize six gestures in
real time. The gesture recognition system is described in details in [17].

3 Integrating Perception and an Intelligent Control
Architecture

The perception system that we outlined in the previous section, while powerful,
is limited to operating on local sensory information. Proximity spaces are purely
reactive “agents” that don’t have knowledge about the current task or their re-
lationship to other proximity spaces. Thus, they have no way of knowing if their
behaviors are “good” in the global sense, that is, helping the robot in perform-
ing its task. In order to take full advantage of our perceptual system, it needs
to be placed under the control of an intelligent architecture (described in the
next section) that uses proximity spaces, in conjunction with other perceptual
processes, to achieve globally desirable tasks.

3.1 Overview of existing 3T architecture

Metrica Incorporated has, over the last several years, developed an autonomous
robot control architecture that separates the general robot intelligence problem
into three interacting layers or tiers (and is thus known as 3T, see Figure 5):

— A set of robot specific situated skills that represent the architecture’s con-
nection with the world. The term situated skills is intended to denote a
capability that, if placed in the proper context, will achieve or maintain a
particular state in the world. For example, grasping, object tracking, and
local navigation. The skills are maintained by a skill manager.

— A sequencing capability which can differentially activate the situated skills
in order to direct changes in the state of the world and accomplish specific
tasks. For example, exiting a room might be orchestrated through the use of
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Fig. 5. The 3T intelligent reactive control architecture.

reactive skills for door tracking, local navigation, grasping, and pulling. We
are using the Reactive Action Packages (RAPs) system [10] for this portion
of the architecture.

— A deliberative planning capability which reasons in depth about goals, re-
sources and timing constraints. The planning tier was not used in the work
described in this chapter.

The architecture works as follows. The deliberative tier takes a high-level
goal and synthesizes it into a partially ordered list of operators. Each of these
operators corresponds to one or more RAPs in the sequencing tier. The RAP
interpreter (sequencing tier) decomposes the selected RAP into other RAPs until
primitive RAPs are reached, which activate a specific set of skills in the reactive
tier. Also activated are a set of event monitors which notifies the sequencing
tier of the occurrence of certain world conditions. The activated skills will move
the state of the world in a direction that should cause the desired events. The
sequencing tier will terminate or replace the actions when the monitoring events
are triggered or when a timeout occurs.



3.2 Integrating active perception and 3T

Integrating perception into this architecture raises a number of interesting re-
search issues, including:

— How can knowledge be moved between the continuous realm to the discrete
(or symbolic) realm during visual processing? What advantages does this
abstraction give an architecture?

— How can scarce perceptual resources (processing power, head movements,
etc.) be allocated to maximum benefit during a task?

— What memory structures are useful for perceptual information? How can
these memory structures be kept up-to-date?

Our approach to these issues is to augment the existing skill and sequencing
tiers of our architecture with a perceptual memory. This memory is designed to
interact directly with high-bandwidth perception and to allow the robot’s skills
to access perceptual data even if the object is no longer being perceived.

Perceptual memory in the skill manager Perceptual memory in an au-
tonomous robot architecture stores task-dependent information about recently
perceived locations within the agent’s environment. Perceptual memory is both
local-space and short-term. That is, elements of perceptual memory typically
represent task-relevant information about the environment in close proximity
to the agent and must be modified frequently to reflect the current state of a
dynamic environment. Both of these characteristics are crucial for perceptual
memory to remain accurate. Elements of perceptual memory must constantly
be checked for validity and modified according to the current world state, hence
they are short-term. Information about the environment beyond a certain range
from the agent’s position cannot easily be verified and should no longer be stored,
hence it is local-space.

Our system of perceptual memory is different from representation systems
that operate at other levels of autonomous agent architectures [8, 9]. It is com-
posed of small, task dependent structures called “markers” [1, 5, 23]. The key
element of markers is that they represent objects in the agent’s environment that
are important to its current task. Our perceptual memory system is designed
to be used by the perception/action layer of the agent architecture, allowing a
collection of behaviors to consult the markers to determine which action(s) to
take. The markers form the behavior’s interface to the sensors. Each marker is
kept up-to-date with the state of the world as long as it is in perceptual memory,
without explicit action by the behaviors.

Components of markers Markers consist of three components, called ‘what’,
‘where’ and ‘identify’. A marker’s ‘what’ component is a task dependent identi-
fier, which one or more behaviors use to determine if they are interested in this
marker. For example, a navigation skill may examine perceptual memory for a
destination marker and any obstacle markers to determine the direction the agent



should travel (we use the notation “destination marker” to refer to a marker
whose ‘what’ component is destination). One of the key properties of markers
which makes them effective for use by an architecture’s perception/action layer
is their task dependence. Which objects are represented by markers will depend
on the task, as will the ‘what’ components of those markers. For example, a chair
may be represented by an obstacle marker when the agent’s task is to cross the
room, but may be represented by a seat marker when the agent is trying to sit
down. In the first case, a navigation behavior uses the position stored in the
obstacle marker to determine how to steer the agent, but in the second case, a
sitting behavior uses the marker to maneuver itself into the chair.

The ‘where’ component contains the marker’s position in some ego-centric
local frame (we use polar coordinates). The ‘identify’ component specifies how
the object associated with the marker can be identified in the visual field. The
‘where’ and ‘identify’ components of a marker give an active vision system the
necessary information to select an appropriate focus of attention and perform
the required processing. In the case of our vision system, the ‘identify’ compo-
nent consists of a set of visual behaviors to enable. These behaviors control the
processing and placement of the focus of attention to maintain the position of
the objects associated with the markers (i.e. track). In order to strike a balance
between the efficiency of stored representation and the need to keep information
from becoming stale, markers also have an associated “confidence” in the infor-
mation they contain. In our system, this confidence is based on timers which
begin counting down whenever the object associated with the marker is not
within the visual field. When a marker’s timer reaches 0, the agent should no
longer believe the information stored there. At this point, the agent can either
direct its vision system to re-acquire the associated object or drop the marker
from perceptual memory.

Integrating perception and RAPs The RAP system is responsible for co-
ordinating sets of skills to achieve tasks. For example, the RAP for tracking an
agent would have to enable the visual tracking skill, the robot motion skill and
any sonar-based obstacle avoidance skills. It would then monitor this set of skills
to verify that the task was being performed. If the task is failing (e.g., the target
is lost) then the RAP system can enable a different set of skills, perhaps those
associated with searching for an agent. The RAP system is also responsible for
creating and deleting markers at the skill level. As such, the RAP system will
need to create a deictic memory of what each marker represents in the current
task context. While a marker at the skill level will have an ‘identity,” this will
be visual data that can be used to recognize the marker. The RAP system will
need to abstract this information to create a symbolic representation, for exam-
ple, marker 32 might be “the person that I am tracking.” This is one level of
abstraction above the proximity space level, as proximity spaces (and associated
markers) only know that they are tracking something, not that it is a person or
what the reason for tracking it is. This information is contained at the RAPs
level. This abstraction can be taken up one more level and the planner could



have information about who that person is, their usual schedule, route, etc.,
which could be used by the RAP system to perform its tasks better. The RAP
system will also be used to allocate scarce perceptual resources and to constrain
the perceptual system using a priori information.

Fig. 6. Left: Our mobile robot with a stereo pair of camera and a single color camera.
Right: The robot attending to two different people.

4 An Integrated Task

We designed a scenario in which our stereo system could be integrated with our
architecture. The scenario was to attend to multiple people in an unstructured
indoor environment. The robot must locate and detect the presence of the hu-
mans based on initial estimates of their locations supplied by the RAP system.
The field of view of the cameras is limited enough that it will seldom include both
of the humans that the robot is to attend. The robot must monitor and track
the position of each human it is assisting. The robot will attend to each person
in turn, staying a small fixed distance from them. When the robot decides to
move on to a different human, it uses its stored knowledge of last known position
in an attempt to locate that individual. Once the human has been located, the
robot can attend to the new target.

The Scenario was implemented on the Pentium MMX system mounted on a
Real World Interface B-14 robot (see Figure 6(left)). The cameras were mounted
on the robot, but tethered to the off-board Pentium for image processing. The



B-14 robot has an internal dual processor Pentium computer running Linux.
This computer was used to control the robot motion as well as to control the
pan-tilt head.

Figure 6 (right) shows the robot (the short, dark column in the foreground)
with two humans. The robot is attending to the standing person. For this sce-
nario, we added a cheap color camera to the stereo pair to provide additional
perceptual information and to examine how multiple sensors could be integrated
using perceptual memory.

4.1 Scenario implementation

In order to perform the integration scenario, we implemented a simple version of
a perceptual memory (see Section 3.2) in the skill tier of our architecture. This
allows the robot’s skill tier to interact with both a proximity space and a color
vision system. A human is represented in perceptual memory by a marker. The
RAP system places two person markers in the skill layer’s perceptual memory.
There are two skills which are active in the skill manager, one controls the
robot’s wheels and the other controls the agent’s pan/tilt “neck.” These two
skills use the ‘where’ component of the marker representing the human to which
the agent is currently attending to move the agent to a fixed distance from the
human. Each marker’s confidence measure begins to decrease when its position
is outside the agent’s current field of view. When the confidence reaches zero,
the agent attempts to attend to the object (human) associated with the marker.
This means it will direct its cameras to the last known location of the human
and attempt to reacquire him or her (and move toward him or her).

Each marker in perceptual memory has an associated proximity space which
it uses to track its associated object. Maintenance of a marker’s ‘where’ com-
ponent is as follows. First its ‘where’ coordinates are transformed using encoder
readings to compute the robot’s ego-motion since the last update. If this new po-
sition projects within the agent’s current field of view, the associated proximity
space is activated (and its correlations performed). If the proximity space reports
sufficient occupancy, the 3-D position of the centroid of the proximity space rel-
ative to the agent is stored as the current ‘where’ for the marker. Otherwise the
ego-motion-determined position becomes the new stored position.

If the agent can track the objects represented by the markers, the question
arises of how the association between the two is first made. There are several
steps in the process beginning when the markers are placed in the skill layer’s
perceptual memory by the RAP system. These markers are uninstantiated and
thus contain only estimated positions for the humans. The color vision system
acts as a peripheral vision system analyzing its entire image to compute coarse
positions to be foveated by the proximity space system for further analysis.
The color vision system consults perceptual memory to find any uninstantiated
markers whose estimated position falls within the current field of view.

For each such marker, the color vision system examines the image for skin
tones (red hues) associated with humans. Image regions with an appropriate
response are matched against a simple constraint model of the positions of the



human head and arms. Since the color vision system is monocular, when a hu-
man is detected, its azimuth and elevation can be determined, but its depth can
not. We say a marker with an azimuth and elevation, but no depth, is “hypothet-
ically” instantiated. The proximity space system places a proximity space, at the
minimum vergeable depth, along the vector indicated by the marker’s azimuth
and elevation. This proximity space then “slides” along the vector performing an
analysis for “occupancy” along the way. When the proximity space occupancy
is greater than a certain value, the proximity space is considered to have “come
to rest” on the object spotted by the color vision system. The associated marker
is now said to be instantiated. The normal proximity space tracking behaviors
are now enabled and the object tracked in 3 dimensions.

The agent attempts to keep the human in view and tries to stay within a fixed
distance of the human. Since there are multiple humans to attend to, the agent
must decide how to allocate its resources. This is done based on the confidence
value associated with each marker. When a marker’s confidence reaches 0, the
agent will attend to the object associated with that marker. Otherwise, it will
continue attending to the same object. When the agent must redirect its gaze to
reacquire a marked object which is outside its field of view, it uses the ‘where’
component of the marker as a starting point for its reacquisition. If the target
is not immediately detectable. The proximity space moves to random locations
within a sphere around the object’s last known position. At each point a texture
analysis, similar to the initial instantiation along the vector, is performed. When
the proximity space lands on an object, it begins tracking it. In general, the
humans do not move far from their last known locations while the agent is
elsewhere. If they move too far, the system will be unable to locate them. If
this happens, the agent can declare the marker uninstantiated and start the
instantiation process again.

4.2 Benefits

The agent’s perceptual memory assists in this task in three ways. First, it pro-
vides information about objects outside the agent’s current field of view. Since
the field of view of the agent’s cameras is limited, it can seldom (if ever) keep
all its targets in view at the same time. Perceptual memory allows the agent to
remember the ego-centric locations of a small collection of task relevant objects.

Second, perceptual memory forms an interface to the sensors for the skills.
In our system, the proximity space behaviors require information about the
individual stacks, but the navigation and neck skills in the skill manager only
require the position of the proximity space as a whole. The perceptual memory
provides exactly this information without requiring the skills to know about
the details of proximity spaces. In our system, the markers serve as a basis for
sensor fusion between the color and stereo vision systems. In general, the ‘where’
component of markers could represent combined information from all the agent’s
Sensors.

Finally, the perceptual memory provides a communication mechanism for
information from the RAP system about the agent’s environment beyond its



current location. The RAP system initially provides the perceptual memory
system with estimated positions for the two humans. The proximity space system
subsequently refines those estimates for use by the skills. However, the RAP
system could be directing the skill layer to look for certain objects as the agent
moves through its environment. For example, if the RAP system believes that
the agent is at a particular location on some map, it can create markers for
various landmarks which should be visible to the vision system. These markers
will be instantiated by the perceptual memory system and then can be used by
the skills to direct the motion of the robot.

5 Conclusions

Autonomous robots need powerful sensors. Active vision systems such as our
proximity space system can provide information about important aspects of the
environment at high speed. However, care must be taken when integrating an
attentive vision system into an agent architecture because of the high volume of
data which must be processed and the limited area in which the processing takes
place at any instant in time. We have presented a system of perceptual memory,
based on markers, which allows us to retain sensor input from the proximity
spaces over time. The perceptual memory system attempts to compromise be-
tween the efficiency of foveated processing and the need for a high level of main-
tenance on the information contained in the markers via a confidence measure.
Our agent performs its task effectively in a complex and unstructured environ-
ment. The proximity space system deals with the difficulties of the environment,
while keeping the perceptual memory accurate. The perceptual memory provides
just the information which is needed for the skills to accomplish this task (and
many others we believe).
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