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Figure ��� Weighted pattern template for the �X�
markers� Positive values indicate ex�
pected black areas� negative areas are
expected to be white� Certainty in�
creases with magnitude�
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Figure ��� Sample marker with calculated �X� cer�
tainty value� �b� indicates a black
pixel� �w� indicates a white pixel� r
counts rows� c counts columns�

Increasing n increases the resolution of the tem�
plate� but also increases the process time� We found
n � � to be a good compromise� This weighted tem�
plate indicates which areas are expected to be black
and which ones white� The weights for our matrix are
currently determined by trial and error� but we could
easily replace these with machine generated weights
if a learning program were implemented� The marker
template which a component most resembles is se�
lected as the �guess� for that component� The pro�
gram generates a certainty measure with each guess
�see Figure 	�� and uses this measure to accept or re�
ject the guess� Each marker can have one or more
templates� The additional templates may be used
to improve marker recognition from views other than
straight on�
We also use additional heuristic information in

identifying the markers� Some heuristics were not
learned or incorporated until after the program had
been tested� For example� diagonal lines often scored
high enough certainty values to be considered �X�s�
Once we realized this� adding a speci�c test to ver�
ify that each possible �X� is not a diagonal line solved
this problem� To avoid slowing down the program too

much� speci�c heuristic tests were kept to a minimum�

Navigation

Once the co�ee pot is found� CARMEL uses the
vision algorithm�s estimation of the pot�s relative lo�
cation to approach it� Since CARMEL doesn�t have
a manipulator� it is assumed that once CARMEL has
approached the co�ee pot it has �grabbed� it and can
then deliver it to the delivery room� CARMEL plans
the shortest path to the delivery room using a stan�
dard shortest�path algorithm� CARMEL then follows
the path by moving from region to region and detect�
ing region boundaries with its sonar sensors� There
are numerous error recovery routines that can cope
with changes in the environment and sensor errors�

Conclusion

Unfortunately� time constraints leading up to the
competition prevented the complete integration of all
of the described skills� In particular� the robot did
not perform registration or localization at the compe�
tition� Instead the robot was told its orientation and
position� During the actual competition� the robot
explored several rooms before becoming hopelessly
lost� at which time the run was terminated� The most
di�cult problem encountered was tuning the sonar�
based region��nding algorithm to the particular en�
vironment� While the algorithm had worked �ne in
our testing environment �the basement of our labora�
tory�� di�erent characteristics of the competition en�
vironment caused many false detections �i�e�� de�ning
the start of a new region when there wasn�t one� and a
few missed detections �i�e�� not detecting a new region
when there was one�� Since the robot�s localization
depended on matching the regions it found with the
a priori map� it became lost very quickly�
Our experience demonstrates an important lesson

in mobile robotics�if the low�level sensing of the
world is not working correctly� then high�level rea�
soning or map making will be unsuccessful� no mat�
ter how elegant their implementations� Our experi�
ence also underscores the fact that routines that are
demonstrated to work in one environment will not
necessarily work in another environment� even if that
environment is quite similar� In addition� our expe�
rience was not unique�no robot at the competition
�out of a dozen entries� successfully completed the
task� Obviously� there remains much work to be done
in mobile robot exploration and navigation of indoor
environments�
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Table �� Probability distribution of location �top� and orientation �bottom� after �rst move�
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Table �� Probability distribution of location �top� and orientation �bottom� after two moves�

Figure ��� Before Modi�cation Figure ��� After Modi�cation
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Table �� Probability distribution of location �top� and orientation �bottom� at the start location�

propagated� The new probabilities for the current
location and orientation are show in Table �� which
says that CARMEL thinks that it most likely to be
at Location 	�� and is most likely to be facing South�
Again moving West �to it� East on the map�� so that
CARMEL sees the new feature at Location �� yields
distributions shown in Table ��

Taking this probability distribution� CARMEL now
has greater than ��� con�dence that it is at Loca�
tion � and was initially facing South� If there was a
door tag at the entrance to the room at Location �� it
could then visually verify that this inference is correct�
CARMEL can now reorient itself correctly to the map
and position itself at the transition point between the
current location �Location region �� and the previ�
ous location �Location region ��� Note that since the
belief network has nodes representing each of the pre�
vious locations also� it is easy to reason about where
the robot has already been simply by looking each
of the nodes and determining the highest probability
state in each� This facilitates exploration updating
in that extra time to perform a backtracking search
through the map with the previously performed mo�
tions doesn�t have to be done in order to see what has
already been explored�

Exploration and Navigation

Once CARMEL is localized it can begin to look
for the co�ee pot� The �rst step in this process is
to plan an exploration path� An exploration path
is an exhaustive sequence of rooms to visit from the
robot�s current location� The sequence is determined
based on the travel distance from the current location�
CARMEL �rst selects the closest room �in terms of
travel distance� not the Cartesian distance�� then adds
another room closest to the selected room� and so on�
After planning� CARMEL traverses the exploration
path stopping in each room to scan with its camera
for the co�ee pot� Exploration is terminated when
the co�ee pot is found� The exploration path can
be modi�ed to accommodate unexpected blockages
or openings�

Planning exploration path using closest�node��rst
�hill�climbing� method does not necessarily generate
the optimal path in terms of total traveled distance��
but in practice this method turned out very fast and
the resultant path was quite reasonable� For example�
the exploration path from� say� �H	
� �in the middle
of the map in Figure � � would be �R�� R�B� R�� R
A�
R�A� R	� R�� R�� R�A�� This sequence speci�es only
the room nodes to visit in that order�

�Finding the optimal exploration path amounts trav�
eling sales man problem

Updating the map

While exploring CARMEL can update its a�priori
map to re�ect blocked hallways and doorways and to
note additional doorways that were not in the original
map� For blocked hallways or doorways� the connec�
tions between the two nodes in the map are cut and
the sonar characteristic of the node is modi�ed ap�
propriately� In the case of unexpected openings� new
nodes are created� assigned the appropriate signature
and connected to adjacent nodes� This information
helps CARMEL �nd the most e�cient route to the
delivery room once the co�ee pot has been found or to
replan its exploration path� For example� if the robot
sees an unexpected opening to a room from a hall
node� it �nds the nearest node �either virtual or real
room node� of the room and create a new link to that
node� Note that each node can have maximum four
connections �roughly corresponding to North� West�
South� and East� to other nodes� Figure 		 shows a
part of the map before the robot sees an unexpected
opening at west side of the hall �H��� It �rst �g�
ures out which room is next to west of �H�� from the
boundary information of each room� In this case� it is
Room � and �V�E� is the closest node of that room�
Now �H�� should be divided into three sections since
the sections are divided based on the sonar�reading
changes and new opening will change the sonar sig�
nature as shown in Figure 	��

Visual sensing

As CARMEL enters each room it scans for the cof�
fee pot� CARMEL�s vision system �nds prede�ned
markers �a black �X� on a white background in the
case of the co�ee pot� in the environment and deter�
mines their pose ��D position and orientation� rela�
tive to the robot� We will describe the algorithm for
detecting the �X� here� The algorithm for determining
the pose of the �X� is described in 	���

Marker detection

The marker detection phase is composed of two
main routines� the connected components routine
and the marker identi�cation routine� The detection
phase must be both fast and accurate for the pose
estimation algorithm to be useful for real�time tasks�
To maximize speed� we make only one pass through

the entire image� During the pass� the image is
thresholded and connected components are found and
labeled� One pixel components are ignored and not
labeled� Size thresholding then �lters out most of
the non�marker components� Only one pass is made
through all possible connected components�
To identify or reject the remaining markers� we

use a weighted pattern matching template� An nxn
template matrix is created for each marker �see Fig�
ure 	���






Move � Best Resolved �Best� Move�s� Move Choice
start ��south���south east�west east
	 ��south���south west east
� ��south west east
� ��south no move no move

Table �� Results from an experiment using rule�based localization�

feature is detected� given a particular location and
orientation� is based on heuristic calculations of the
correlation between what should be observed and that
which is actually observed� The conditional probabil�
ity that the robot is in a particular location� given a
previous location and orientation� is a simple boolean
function based on the map� where the probability is
	�� if the locations are adjacent and joined by a path�
and ��� if they are not�
Upon initialization� an observation of the robot�s

initial surroundings is placed in the Feature� node
of the network and then propagated throughout the
network� The resulting posterior probability distri�
bution in the Location� and Orientation nodes
re�ect the evidence�s impact upon the likely starting
location and orientation of CARMEL� The robot can
use this revised information in its planning to either
facilitate improved localization or to switch to explo�
ration of the o�ce environment if the probabilities are
suitably high enough to justify this�
In the situation where the resulting probabilities

are such that CARMEL is still unsure enough of
where it is to warrant further localization� CARMEL
plans and executes a move in a direction most likely
to take it to a door tag in the shortest amount of time
�i�e�� shortest distance�� When it detects a change in
the sonar features around it� it stops and makes an�
other observation� The new sonar feature� as well as
the motion the robot made to get to its current loca�
tion� is fed to the belief network as evidence� propa�
gated� and the resulting probability distributions ana�
lyzed� This cycle continues until either CARMEL be�
comes sure enough of its location based solely upon
the sonar features so far detected� at which time it
switches to exploration mode� or CARMEL detects a
door tag� at which time it knows with certainty where
it is� and similarly switches to exploration mode� The
belief network in Figure 	� shows the belief network
at iteration � in the process� As can be seen in this �g�
ure� the belief network grows at each iteration� adding
new Location� Motion� and Feature nodes� The
portion of the network that includes the Move node
models the dependence of the robot�s new location
upon the previous location� the original orientation�
and the move the robot made to get to the new loca�
tion�

Experimental Results

We evaluated the belief network�s ability to localize
CARMEL in the halls of the University of Michigan�s
Arti�cial Intelligence Laboratory� The map for the
region is shown in Figure 
� with the possible local�
ization locations indicated by the numbered regions�
Each of the labeled locations represents a region of

Figure �� Initial belief network architecture�

Figure ��� Belief network architecture showing the
network at iteration � of the process�
The Feature and Move nodes are in�
stantiated as evidence� and the Loca�
tion and Orientation nodes are inferred�

the map that has the same sonar feature type� Trav�
elling between regions �locations�� then� implies that
the sonar feature must change at the transition point
between the regions�
As an example� suppose CARMEL starts in loca�

tion �� the T�intersection at the South end of the
map� and is initially facing South� The sonar fea�
ture observed would be that of a single blocked direc�
tion� that directly in front of it� Passing this evidence
to the localization network� the resulting probability
distribution for the current location is shown in Ta�
ble ��top�� while the posterior distribution of theOri�
entation node is shown in Table ��bottom�� These
state that CARMEL is either in Location �� �� � or
		� and is most likely to be facing South�
If CARMEL then moves West �to it� East on the

map�� it will move until it enters region �� which has
a di�erent sonar feature� The new feature� that of an
East�West hall� and the West move that CARMEL
made� are both given to the localization network and

�



Figure �� Map of the experimental space showing
a priori regions�

Move Planning

CARMEL scores the possible moves it can make
based on the location resolutions� CARMEL looks
at each location resolution that it has and computes
a shortest path to the nearest door marker for that
resolution� The �rst move of this path is considered�
This �rst move is either one of the four directions� or
no movement at all �the special case where CARMEL
is hypothetically in the vicinity of a door marker��
For each �rst move of a particular type� weight is

added to that corresponding move possibility� The
weight added depends on the score found for the
location�orientation pair that the �rst move was de�
rived from� If CARMEL saw a door marker at this
stop� or if any location�orientation score for one of
the �rst moves is above a certain threshold� then the
�don�t move� move choice is given a score of in�nity�
and CARMEL assumes localization is complete� In
the former case� CARMEL assumes it is now at the
location on the a
priori map where the door marker
is� In the latter case� CARMEL assumes it is at the lo�
cation resolution found for the above�threshold score�
As a �nal factor in move choice� we programmed

CARMEL to select from these possible movement
choices the highest scoring direction that has the
shortest path to an unexplored region on CARMEL�s
map� This ensures that CARMEL covers unexplored
space as e�ciently as possible while searching out
door tags� It also guarantees that CARMEL will not
�paint itself into a corner� or oscillate between ad�
jacent nodes while exploring �two problems that oc�
curred without this adjustment��

Experimental Results

Here are some results of a typical run with the rule
based algorithm� The map given CARMEL is shown
in Figure 
� and a door tags are located at nodes ��
�� and the north end of ��
We placed CARMEL in feature region � and

aligned the robot so that it faced south on the map�
CARMEL was told that it was starting somewhere
along the south hall �nodes ����� CARMEL localized
after the third move without using door markers�
In Table 	� the Move � column shows the current

move� The Best Resolved column reports the best

location�direction pair� i�e�� CARMEL�s top choice�s�
for where it may be� The number is the feature node
label corresponding to the map� and the direction is
the direction CARMEL thinks it�s facing� For exam�
ple� ��south means CARMEL thinks it may be at
node � facing south�
The �Best� Move�s� column indicates the best

moves computed by the possible move scoring rou�
tine� Directions are displayed here as the true direc�
tion on the map for ease in interpretation� Multiple
directions indicate a �tie�� in which case the �nal move
is chosen from them based on exploration preference�
The Move Choice column is the actual move made

by CARMEL� It may di�er from the previous column
if CARMEL chose an unexplored area over a high
score direction�
It may seem strange at �rst that the �best� move

and the move choice are totally uncorrelated after the
�rst move� One must remember that the �best� move
is a result of weighting all possible moves for all resolv�
able pairs� so it doesn�t necessarily represent the true
best move that can be made� especially in a symmet�
ric environment� The moves chosen were carried out
because CARMEL picked a direction� and preferred
to explore new area on a �next best� score rather than
backtrack on a best one �which only may be best by
a margin�� Also� it is important to remember that
the Best Resolved nodes are not the only nodes used
in determining direction� All of the possible location
resolved nodes are considered� weighted only by the
location�orientation score associated with them� The
Best Resolved values are therefore only displayed to
show how quickly the algorithm can localize�

Belief Network Approach

In the second localization approach� the depen�
dence of the sensed features on the world map� the
robot�s initial orientation� and the direction of travel
of the robot as it attempts to localize itself� is mod�
eled using a belief network �� 		�� As the robot moves
about and sees new features� the belief network accu�
mulates a history of the features observed and the
movements that the robot has made� These obser�
vations can then be propagated through the network�
resulting in a probabilistic distribution over the possi�
ble locations the robot may be in currently� The robot
considers itself localized when one of the locations
achieves a level of con�dence about a certain thresh�
old� If CARMEL is not yet localized� it can use this
distribution to determine the most likely direction in
which to travel to facilitate better localization� Cur�
rently� this amounts to moving in the direction most
likely to take it to a room tag� the most unambiguous
localization feature detectable by CARMEL�

Belief network operation

The belief network that we used is shown in Fig�
ure �� This network models the dependencies between
the robots initial location� its initial orientation� and
the sonar feature that it �sees�� The modeling is ac�
complished both through the topology of the network
as well as the probability tables �both conditional and
priors�� The conditional probability that a certain
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meters� The accuracy of the registration and the dis�
tance covered during a run were acceptable and within
the limits of the environment that was expected to be
encountered�
The second set of runs had two parts� The �rst part

was carried out with CARMEL given an initial orien�
tation of �� degrees� The second part used an initial
orientation of �� degrees� Eight runs were carried out
with each orientation� In the �rst part� CARMEL
determined the hall axis to within �ve degrees each
time� except one in which it wandered into the room
through the opening� The average distance required
was approximately �ve meters� In the second part�
CARMEL entered the room twice� but determined
the hallway axis to within four degrees in the other
six runs� The average length of the successful runs
was about ��� meters�
While these runs were far from exhaustive� they

do show that this method of registration is useful�
The most di�cult problem is that of wandering into
a room� This can either be avoided or detected� with
the �rst preferable� The di�culty with preventing
CARMEL from drifting into a room is that there is
no simple way to distinguish between an opening into
a room and a narrowing of the corridor due to obsta�
cles� The former should not be entered while the lat�
ter should be� Detecting the entry into a room should
be simpler� The chi�square �t provides a goodness of
�t measure� namely ��� When CARMEL enters a
room� its path is generally straight but roughly per�
pendicular to the hall axis� This should yield a very
poor value for ��� The use of this value and the re�
turn of CARMEL to the hallway it left are still being
investigated�

Localization

Once registered� the next critical issue is the deter�
mination of the correct location and orientation of the
robot� We call this process localization� CARMEL ac�
complishes localization through the accumulation of
information� in the form of local sonar signature fea�
tures� during its initial movement through the halls
of the �o�ce� environment� and through observa�
tion of visual tags identifying doors� We would like
CARMEL to localize itself as quickly as possible� how�
ever� so that in the absence of door markers we try to
use the sonar signature features� In both approaches
CARMEL is given a map representing the environ�
ment in which it will be placed� However� the map
can be in error in that doorways may exist where they
are not so indicated on the map� and doorways may
be blocked where they are indicated on the map� The
localization schemes must therefore deal with these
problems�
We have implemented two approaches� one based

upon heuristics and con�dence factors� the other upon
probabilistic reasoning using a belief network� Our
localization methods only work in hallways� so that
if CARMEL�s initial location was within a room we
would �rst have to �nd an exit using a wall follow�
ing behavior� In this section we describe each of the
approaches and show them in operation� Although

both were implemented� neither have actually been
fully integrated into the o�ce exploration system�

Rule Based Localization

One method of localization that has shown to be
successful is a rule based system� Before CARMEL
makes a move during rule based localization� it com�
putes scores over all of its possible starting locations
in the a
priori map�

Creating a Score Distribution

Since direction is ambiguous to CARMEL at �rst�
we run our scoring algorithm four times� rotating
CARMEL�s map to a new cardinal orientation each
time� So for n possible starting locations� there are
�n total scores computed�
The basic scoring algorithm is a modi�ed depth�

�rst recursion� which runs as follows�
The �rst feature node seen by CARMEL is com�

pared with the start node in this orientation� The
comparison scores points depending on how many
sonar signature features �i�e�� walls or openings on the
four sides of the robot� match and on the measured
extent of a region� However� points scored for extent
matching are fewer because we have determined that
distance data tend to be more erroneous than the de�
tected sonar signature features�
Each node adjacent to the current one on

CARMEL�s constructed map is checked to see if it has
been examined yet in this orientation� If the neigh�
boring node has not yet been examined� then it is
compared with the node corresponding to it on the
a
priori map� The algorithm continues this recur�
sively for all of the paths the robot can follow from
the start node� The score for each recursion is added
to the total score for that start node in that particular
orientation�
While the algorithm recurses� it also tries to answer

this question�

If CARMEL started in this start node with this
orientation� where would CARMEL be now�

If the algorithm can determine this� it makes note of
the fact� We refer to a current location inference of
this type as a location resolution� There is no guar�
antee that a start node�orientation con�guration will
produce a location resolution�
In the event that a path to an adjacent node exists

in CARMEL�s map but a wall exists on the a
priori
map� the routine attempts to �gure out possible lo�
cations across the wall that might correspond to the
node CARMEL saw� If a possible match is found�
then the routine continues from there� otherwise� no
points are scored for that area on CARMEL�s map�
After all of the location�direction combinations are

examined� the algorithm normalizes the raw scores
by computing the mean and standard deviation of
the score set� Then each original score is replaced
by the number of standard deviations the score was
above the mean� The resulting scores are now less
dependent on the number of nodes seen by CARMEL�
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Figure �� Arena Con�guration Figure 	� Arena Map

register itself in a hallway� if CARMEL starts in a
room it must wall�follow until it enters a hallway� To
register in a hallway� CARMEL starts to travel in any
free direction� As it travels� the VFH obstacle avoid�
ance algorithmwill automatically align CARMEL be�
tween the two walls of the hallway� While moving�
CARMEL saves its �x�y� positions along the way and
�ts a line to them� The orientation of this line is used
to determine the axis of the hallway� CARMEL can
reregister during the task to correct dead reckoning
errors�

During initial registration� when the robot has no
information as to its orientation in the environment�
CARMEL also stores and averages the direction of
free space� This should always fall along the axis of
the hall� However� obstacles in the hallway� door�
ways� and intersecting corridors cause CARMEL to
drift from the middle of the hall� Therefore line �t�
ting� which is a simple chi�square �t� is used� This
occurs after CARMEL has traveled a minimum dis�
tance and the rate of change in the average free�space
direction falls below a threshold� If CARMEL be�
comes trapped before this time� it turns around and
starts the process again assuming that it has reached
a blockade in the passage or the end of a hall� If
the orientation of the �t line is too far from the aver�
age free�space direction� it is assumed that CARMEL
has not been traversing a hall or has �fallen� into
a room or an intersecting hallway� In either case� all
data are disregarded and the entire process� including

wall�following if necessary� is repeated�

For reregistration during the task� the previous ori�
entation can be used to judge the accuracy of the cal�
culated orientation� When there is a large di�erence
between the previous and new orientations� either the
old one can be maintained or the process can be re�
peated� Maintaining the old orientation repeatedly
is dangerous because CARMEL�s orientation can be�
come very inaccurate over a period of time�

We evaluated the registration algorithm in two sit�
uations� The �rst situation was in a corridor with
no obstacles or openings into rooms or intersecting
hallways� These experiments set out to con�rm that
the algorithm will correctly identify the hall axis re�
gardless of CARMEL�s initial orientation� In the sec�
ond set of experiments� CARMEL was placed in a
more complex area which included an obstacle and
an opening into a room� The intention of these runs
was to determine the robustness the algorithm� as it
currently stands� in a more realistic situation�

Twenty�seven runs were carried out in the obstacle�
free hallway� CARMEL�s initial orientation with re�
spect to the hall axis varied from 	� to 	�� degrees in
�� degree steps� CARMEL�s initial orientation was
determined by eye and so is inaccurate by up to a
degree or two� At each initial orientation� three runs
were made� CARMEL determined the actual hall�
way axis to within six degrees in all but one run� In
this case� the calculated hall axis was o� by nine de�
grees� No run required more than approximately four

�



Figure �� Flowchart for accomplishing the �nd and deliver task�

Figure 
� Detecting region boundaries using VFH�

positions it in the middle of the hallway� When the
robot is positioned in the middle of a hallway the po�
lar histogram has two �mountains� for the two walls
of the hallway �Figure ��top��� The presence of a
�mountain� means that the robot is blocked to that
side� In this example� the sonar signature is� �front
� open� back � open� right � closed� left � closed��
As the robot moves down the hallway and approaches
the doorway� the �mountain� on that side of the robot
will disappear �Figure ��bottom��� So the sonar sig�
nature is now� �front � open� back � open� right �
open� left � close�� By �camping out� at the polar
histogram segments corresponding to the front� back�
left and right of the robot� changes in the sonar sig�
nature can be immediately detected�
In tests on the repeatability of this algorithm�

CARMEL was asked to repeatedly stop at the same
region boundary in the basement of our laboratory�
Over ten consecutive runs� the largest di�erence in
position along the hallway�s axis between any two
runs was ���mm and the largest di�erence in posi�
tion perpendicular to the hallway axis along any two
runs was ���mm� During these runs� obstacle avoid�
ance was performed and the robot was running at a
speed approaching ��� mm sec�

While our boundary detection algorithmworks �ne
in hallway environments� it has not been extensively
tested in rooms� We rely instead on the dead reckon�
ing capabilities of our robot to move into and out of
rooms� Extending our approach to rooms as well as
hallways is a topic of future research�

Map representation

Each region of the environment� which corresponds
to a sonar signature� is represented by a node� A node
contains the extent of the region �i�e�� its length and
width�� a global �x�y� position of the center of the
region and connections to neighboring regions� Fig�
ure � shows an example con�guration of the arena
where the robot will be working� As shown in Fig�
ure �� the whole area is divided into regions based on
the sonar signature� The regions are further distin�
guished by either being a hallway region or a room
region� Each hall section has one node at the center
of the hall �nodes with �H� pre�x�� Every exit of the
room also has one node close enough to the entrance
�nodes with �R� pre�x�� Each room section has some
extra virtual nodes �nodes with �V� pre�x� for each
side of the walls of the room� These virtual nodes
serve two purpose� First� they are used to �gure out
the boundary of the room� Since each node has its
�x� y� coordinate� we need at least two room�nodes to
calculate the boundary of a rectangular shape room�
Second� they are used for map modi�cations which
will be explained later in this paper�
Rooms can have up to four exits� one each to the

north� south� east and west� If a room has more than
one exit on each side it will be split into several vir�
tual rooms� Large open space� such as lobbies� are
also classi�ed as rooms and may have to be split into
several virtual rooms� For example� rooms ��
 and �
in Figure � are all virtual rooms contained within a
single open area�

Registration

In order for our representation scheme to work�
CARMEL must be able to determine the main axes
of the corridors� so that it can start searching for re�
gion boundaries to its left� right� front and back� We
call this registration� Currently� CARMEL can only

�



Figure �� The mobile robot CARMEL�

provided by an algorithm called VFH �� �� ��� VFH
constructs a certainty grid of sonar hits and uses it
to continually compute a new direction that will take
the robot towards its target while avoiding obstacles�

Overview

We �rst present the robot�s representation of its
environment� This is the representation that is en�
tered into the robot from an a priori map� The robot
must then register itself �i�e�� determine its orienta�
tion� with respect to the environment� we give a basic
registration algorithm� Next the robot must localize
itself with respect to the a priori map� two di�erent
localization algorithms are presented� Once the robot
is registered and localized� it can begin exploring the
environment and looking for the co�ee pot� We de�
scribe our vision algorithm to detect the co�ee pot
and also describe how we update the a priori map to
re�ect changes in the environment� Finally� the robot
must navigate from the room that contains the co�ee
pot to the delivery room� This sequence is shown in
the �ow chart in Figure ��

Representing the environment

The map in our representation is a graph of nodes�
Each node represents a region of the environment that
has a common sonar signature� Each link between
nodes represents a bidirectional connection between
the two regions� The �rst issue when creating such
a representation is to decide on an appropriate sonar
signature that will distinguish between di�erent re�
gions�

Detecting region boundaries

There have been many approaches to using sonar
sensors to de�ne distinctive places in an environment�
including 	�� 	� �� �� �� 
�� In our approach� a region
in the environment is characterized by having a com�
mon sonar signature throughout its extent� where the

Figure �� The sonar signature feature set de�
tectable by CARMEL�

Figure �� The VFH obstacle avoidance algorithm�

signature is the pattern of free or blocked space to the
front� back and sides of the robot� Thus� there are 	�
unique sonar signatures in a rectilinear environment
�see Figure � for a complete listing of the 	� sonar sig�
natures�� Our approach is unique in that it is directly
tied to an obstacle avoidance algorithm�the Vector
Field Histogram �VFH� ���
The VFH algorithm �rst creates a histogram grid�

which is a certainty grid representation of the objects
surrounding the robot as detected using the robot�s
sonar sensors� VFH then takes a local window of the
certainty grid and converts it into a polar represen�
tation called the polar histogram� A certainty grid
and its corresponding polar histogram are shown in
Figure �� The polar histogram shows the obstacles in
each direction around the robot� To avoid obstacles�
VFH simply chooses the free direction of travel that
is nearest to the desired direction of travel� This same
polar representation is used to produce the sonar sig�
nature�
A simple example will best show how the polar his�

togram is used to detect a region boundary� The robot
is started down the hallway �the direction of the hall�
way is determined by an algorithm described in Sec�
tion �� and VFH automatically aligns the robot and
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Abstract

Autonomous mobile robots need to integrate many
di�erent skills in order to perform complex tasks�
In particular� they need to explore� sense� map and
navigate in unknown or partially known environ�
ments� This paper describes a robot system that
is designed to perform a �nd�and�deliver task in an
o�ce�building�like environment� The robot�s initial
orientation and location within the environment are
not known� but the robot does have an a�priori map
of the environment� We describe a sensor�based map
representation that the robot uses while exploring its
environment� We also describe how the robot deter�
mines its initial position and orientation within the
environment� how it explores the environment for a
visually�tagged object� how it recognizes the object
and how it delivers the object� The robot also up�
dates its map to re�ect changes in the environment�
While the entire robot system has not yet been in�
tegrated� each subsystem described in this paper has
been implemented and tested�

Introduction

Autonomous mobile robots need to explore� sense�
map� navigate and perform tasks in the environments
in which they �nd themselves� Often these �ve func�
tions are studied separately� with little or no atten�
tion given to how they are all integrated to produce a
completely autonomous mobile robot� In this paper
we concentrate not on completely describing any sin�
gle aspect of robot exploration� sensing� mapping or
navigation� but instead on how many di�erent skills
can be integrated into an autonomous robot that per�
forms a sophisticated task� Unfortunately� time con�
straints prevented a complete integration of all of the
described skills on the mobile robot� All of them� how�
ever� were tested individually and their integration is
planned�

�Now at The MITRE Corporation� ���� NASA Road
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Task description

The task our robot is designed to perform is to �nd
a single� visually tagged object somewhere in a large�
o�ce�like environment and to �deliver� the object to
a designated room� The robot is given a crude map
shortly before being asked to perform the task� How�
ever� the map does not show obstacles that may block
hallways or doors� nor does the map show all of the
doors in the environment� The robot does not know
its starting position or orientation with respect to the
map� The delivery object is in one of the rooms and is
a co�ee pot marked with a black�and�white �X�� The
robot need not actually pick�up the co�ee pot� only
approach it� Some� but not all� of the doors are tagged
with a visually distinct bar�code� bar�coded doors are
noted on the map and the delivery room will be one
of them� The robot has �� minutes to complete the
task� which was one of three tasks that comprised the
AAAI ��� Robot Competition and Exhibition held in
Washington DC on July 		�	�� 	����
The task is challenging to mobile robots because it

requires the integration of many mobile robot skills�
The robot must initially explore the environment and
determine its position and orientation with respect
to the a�priori map� The robot must then plan an
exploration strategy that will allow it to examine each
room for the co�ee pot� This strategy must be �exible
in the face of unexpected obstacles� Finally� the robot
must use visual sensing to detect the co�ee pot� plan
a path from the object to the delivery room and then
follow that path�

Robot description

Our robot is a Cybermotion K�A called CARMEL
�Computer�Aided Robotics for Maintenance� Emer�
gency and Life Support� �see Figure 	�� It has a
ring of �� sonar sensors and a rotating B!W cam�
era� Three computers are on�board CARMEL� one
computer each for the motors and sonar sensors and
a �
��PC for high�level processing� The �
��PC has
a framegrabber and performs all image processing�
CARMEL has a basic obstacle avoidance competence


