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ABSTRACT 

This paper describes a set of tools that enables developers to log and analyze the 
run-time behavior of autonomous control systems.  A feature of the tools is that they can 
be applied to distributed systems.  The logging tools enable developers to instrument C or 
C++ programs so that data indicating state changes can be logged automatically in a 
variety of formats.  In particular, run-time data from distributed systems can be 
synchronized into a single relational database.  Tools are also provided for visualizing the 
logged data. Analysis to verify correct program behavior is done using a new interval 
logic that is described in this paper. The logic enables system engineers to express 
temporal specifications for the autonomous control program that are then checked against 
the logged data.  The data logging, visualization, and interval logic analysis tools are all 
fully implemented.  Results are given from a NASA distributed autonomous control 
system application. 
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1. Introduction 
Debugging and verifying distributed control programs is notoriously difficult, yet such 
control programs are becoming more and more common for complex applications.  
Examples include spacecraft control [Muscettola et al 1998], process control [Bonasso 
2001], multiple robot applications [Simmons et al 2000], and production plant control 
[Musliner and Krebsbach 1998].  In each case, concurrent programs, often on separate 
computers, generate control commands for single, or multiple, devices. 

The difficulty in debugging such applications is directly related to their distributed 
nature.  When a problem arises, it is often difficult to isolate the problem to one specific 
control module due to timing constraints, interprocess communication, and 
synchronization.  The traditional dynamic method for debugging sequential software has 
no timing constraints.  For such systems, cyclic debugging (running the program until an 
error shows up, examining the program state, inserting assertions, and re-executing the 
program to obtain additional information) is commonly used [Tsai et al 1996].  However, 
there are several reasons why this approach cannot be applied to distributed control 
programs: 
• Often the distributed processes cannot be paused for examination, since they are 

controlling physical hardware. 
• There is no central, global state (or even global clock) to reference state values, which 

makes it difficult to reason about the “state” of the system at a given time. 
• Due to latencies and timing issues, distributed control programs are inherently non-

deterministic and non-repeatable.  

Moreover, the types of questions that developers of distributed, autonomous control 
systems need answered are often temporal in nature and refer to interdependencies 
between modules.  For instance, developers may have questions such as: 
• Do two states in separate control programs always change together?   
• What is the latency between the change in one and a change in the other? 
• When event X occurs in one module, how long before event Y occurs in a second 

module? 

Traditionally, such questions are answered by instrumenting programs to write data to 
files, collecting and collating the files, and inspecting the execution traces to look for 
patterns of interest.  Each phase of this procedure is typically done by hand and is 
application-specific.  Thus, the process tends to be tedious and error prone. 

Our approach is to develop application-independent tools that are tailored for the 
collection, display, and analysis of data for distributed autonomous systems.  This paper 
presents a suite of data collection and display tools and a temporal, interval-based logic 
that facilitate debugging and verifying distributed programs.  The data collection tools 
enable developers to easily instrument control programs and to synchronize the data 
collected in a distributed system.  The display tools enable developers to visually spot 
trends in the data.  The interval logic is used to analyze the logged data to determine 
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whether the execution of a distributed program is consistent with a formal description of 
the program’s behavior. The logic includes mechanisms to deal with real time and has 
powerful mechanisms to specify relationships between events, temporal intervals, and 
sets of these constructs. The data collection, display, and logic tools all work together via 
a common relational database, which facilitates data storage and retrieval. 

1.1. Overview 

Our approach consists of three sets of tools: Tools for instrumenting distributed, real-time 
systems and logging execution data into a database, tools for doing temporal analysis of 
execution traces, and tools for visualizing data.  The tools are connected through a 
relational database.  Figure 1 shows the general architecture. A library of real-time data 
collection tools called Rlog is used to instrument each of the distributed processes.  The 
Rlog tools send data corresponding to events (state changes) to a centralized database.  
After execution, an analysis tool, based on a customized interval temporal checking logic 
(ITCL), uses the data in the database to verify specifications of the distributed system.  
Counterexamples produced by the analysis tool can be used to help debug the system. In 
addition, relationships between the data can be visualized using display tools. The rest of 
this paper describes each of these pieces in detail, and presents results of using the tools 
in a distributed autonomous control system developed at NASA.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. General Architecture 
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1.2. Related work 

Work on collecting data from real-time programs has resulted in a product from Real-
Time Innovations Inc. called Stethoscope [Schneider 1995].  Stethoscope allows for data 
collection, display and modification.  However, it is limited to real-time programs 
running under VxWorks and does not offer support for the kind of high-level, cross-
system debugging that distributed systems require. 

There are recently developed tools for debugging and verifying parallel systems that are 
related to our research.  For example, ParaGraph [Heath and Etheridge 1991] provides a 
variety of visualizations of a parallel system.  There are also tools for debugging and 
verifying multi-threaded programs, including tnfview [Kleiman et al 1996].  However, 
none of these tools can offer the cross-system and high-level debugging and verification 
support needed by autonomous systems.   

As for analyzing the data after it has been collected, a temporal logic is a good candidate 
to define the specifications to check on the execution trace data since it can specify 
properties of event and state sequences. However, traditional linear-time temporal logic, 
such as PTL [Gabbay et al 1980] and ITL [Moszkowski 1994] or branching-time, such as 
CTL [Emerson and Clarke 1982], cannot specify quantitative aspects of time. The 
concepts of eventuality, fairness, etc. that these languages support are all basically 
qualitative treatments of time. For example, the expression �(p→◊q) can be interpreted 
in linear-time propositional temporal logic as “Every stimulus p is eventually followed by 
a reaction q.” However, it is not possible to express “Every event p is followed by a 
reaction q in the next 4 time units.” 

To overcome this shortcoming, three different methods are typically used to represent 
metric time [Tsai et al 1996]. One method is to use explicit clock variables, such as a 
global clock, and bind a variable to the corresponding time when an event occurs. This 
approach is used in TPTL [Alur and Henzinger 1990] and XCTL [Harel et al 1990]. 
Another approach uses bounded temporal operators to restrict the time span between two 
events. Metric TL [Koymans 1990] is one example of this approach. The third method 
uses a time function, such as the one used in RTL [Jahanian and Mok 1987].  

Most of these logics were designed for model checking and they restrict their language to 
be able to apply verification methods. However, other logics such as Event-based Real-
time Logic (ERL) [Chen et al 1991] and Real-time Interval Logic (RTIL) [Razouk and 
Gorlik 1989] were developed to yield practical tools for software testers running the 
system and checking the specifications over the trace data.  

2. A Running Example 
A key goal of this research was to be able to handle complex, real-world distributed 
systems. To that end, we have tested our logging and analysis tools on an automated, 
distributed system to control an advanced water recovery system (WRS) at NASA 
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Johnson Space Center.  The WRS control system consists of four components. We chose 
one, the air evaporation system (AES), for this test.  The entire WRS system and its 
controllers are described in [Bonasso 2001].  We introduce the AES here and refer to it 
throughout the rest of the paper.  

2.1. The Water Recovery System 

The AES consists of an evaporation loop of heated air blowing through a wick and a 
condensing heat exchanger (HX). The wick is integrated with a brine reservoir such that 
when there is brine in the reservoir, the wick will absorb it.  Hot air is blown through the 
wick, evaporating the brine and filling the air with water vapor.  When the hot air passes 
through the heat exchanger, the water vapor condenses into a tank. 

When the AES is integrated with the rest of the WRS, a pump is used to flow the 
condensate to the post processor whenever the level in the condensate tank reaches a 
certain value. There is also an overflow/brine feed tank to catch any overflow from the 
wick reservoir. There are weight scales on the overflow tank and on the condensate tank.  
A manual pump is used to pump the brine back into the reservoir from the overflow tank, 
which also serves to prime the system for stand-alone testing. 

2.2. Sensors 

Starting from the blower, there is a heater with an automatic high-temperature cut-off that 
heats the air to around 60°C, then the wick, and then the HX. There are 15 thermocouples 
on the wick, and several around the evaporation loop. Only the heater thermocouple 
(TC29), wick input (TC10) and HX input (TC27) are used for control, but all are logged. 
There is a differential pressure sensor across the wick and one across the HX, but these 
are also only for logging.  For control, there is a relative humidity sensor (DW01) in the 
wick (for drying it out), a mass flow meter (FM07) in the evaporation loop, and a liquid 
flow meter (FM08) in the HX. Two other temperature sensors associated with the 
dewpoint sensor and gas flow meter are also only logged. Additionally there are 
ammeters for the blower (PW01), the heater power (PW02), and power to the devices 
(PW03 - general power). 

The wick reservoir has high, mid, and low level switches. There is no direct feedback 
from the relays used to turn on the blower, heaters, and cooling water solenoid valve.  
Instead, the power sensors and the flow meters are used as indirect feedback. 

2.3. Control 

The main purpose of the control is to start the evaporation process (coolant flowing, 
blower on, heaters on) whenever the low reservoir switch is on, and to stop the process 
whenever that switch is off.  The heater is actively controlled to maintain air input to the 
wick at 60°C (the heater element temperature is around 175°C).  Monitoring is necessary 
for air and chiller water flow, wick out temperature, and wick dewpoint.  The HX chiller 
water solenoid valve, which is normally open to allow flow, is closed whenever the AES 
is shut down, so as not to inordinately lower the temperature of the surrounding tubing. 



5

In addition, when integrated with the rest of the WRS, AES operations are augmented to 
include determining whether the condensate will go to the post processor or be recycled, 
and whether to flow condensate to the post processor when the RO is in purge.  An 
automated three-way valve determines whether AES condensate goes to the post 
processor or is rejected back to the feed tank. The AES monitors the state of the RO and 
the level in the condensate tank to try to flow condensate to the post processor whenever 
the RO is not flowing water to it. This approach insures a longer duty cycle for the post 
processor. 

3. Data Collection 
The data collection demands of autonomous control systems range from low-level 
sensory data and the program’s internal state to high-level goals and state transitions.  
The data collection routines should be easy to use, flexible, and have minimal impact on 
the run-time of the system.  In particular, in designing our data collection routines we 
imposed the following requirements: 
• Data collection must be real time 
• Distributed data must be synchronized through logging to a database 
• Data must be collected with flexible sampling rates 
• Data must easily be grouped into logical sets 
• Data must be collected conditionally (e.g., allowing data only in certain ranges to be 

collected, or only when it has changed, or only for certain logical sets) 

In addition, a primary requirement was ease of use.  Our goal was to replicate the 
flexibility and ease-of-use of the printf facility in C, while allowing for more fine-grained 
control and for distributed operation. In essence, we have implemented a remote printf 
capability that is called Rlog. 

Rlog is a tool that enables developers to instrument their programs and direct the output 
data to a variety of different locations, including the screen, a file, a remote computer, 
and a database.  As with printf, Rlog can directly handle variables whose types are any of 
the primitive C data types (character, short, integer, long, floating point, double float, 
string).  More complex data structures can be logged by defining a sequence of these 
primitives.  In addition, Rlog enables developers to specify that, periodically, logged 
variables whose values have recently changed should be collected, that certain subsets of 
the variables should, or should not, be logged, and that logging should occur only when 
the values of variables fall within certain ranges.  These capabilities provide an 
expressive power similar to printf, but with much more flexibility as to when, where, and 
how to collect the data. 

A final important requirement was portability.  Rlog works on the following platforms: 
Linux, Solaris, IRIX, and NetBSD.  We are currently working on a VxWorks port.  As 
much as possible, the code avoids operating system dependent calls to allow for easy 
porting to new platforms.  While Rlog is geared towards the C/C++ programming 
language, other programming languages (such as Lisp and Java) can access them through 
foreign function calls. 
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3.1. Rlog functions 

Rlog is implemented as a set of libraries. The libraries, which all share a common 
interface, are each specialized for logging output to one type of medium (screen, file, 
database, etc.).  Developers use Rlog by adding calls to the library functions throughout 
their application programs.  The developer indicates which output types are needed and, 
at run time, the necessary libraries are loaded dynamically (as plug-ins). 

The Rlog interface is divided into a number of different functionalities.  There are setup 
and cleanup functions, unconditional logging functions, change-only logging, conditional 
logging, and function entry/exit logging functions.  The following subsections present 
each of these capabilities and describe their functional interfaces. 

3.1.1. Setup and cleanup 
Before using any of the logging functions, Rlog must be initialized.  The conceptual 
model is that there are different output types (screen, file, database, etc.) and which 
output type(s) are active for a given run can be specified dynamically, at run time.  The 
output types are specified symbolically – for instance, one could be called “debug1” – 
and a configuration file is used to map between the symbolic name and the location of the 
associated Rlog library for that output type.  The configuration file can also include 
options that are specific for particular output types (such as the file name to use if logging 
to a file).   

3.1.2. Unconditional logging 

In many instances, one needs to log some aspect of the internal state whenever execution 
reaches a certain point in the program.  For instance, one might want to log the pose (x, y, 
z, roll, pitch, yaw) of a robot immediately after the pose is calculated, or log the 
temperature and pressure of a tank immediately before a decision is made about what 
action to take.  The basic logging functions all take a set of variables and output the 
values of the variables, annotated with a timestamp and the name of the host on which the 
program is running. The logging functions are all optimized to minimize impact on the 
user program (see Section 2.5). 

Sometimes, one cannot collect all the appropriate data at one point in the program, but 
one still wants to treat the collection of variables as a logical unit.  This could be due 
either to variable scooping (local variables may be inaccessible at certain points in the 
program) or temporal scooping (for instance, one may want to log aspects of the state 
both before and after an operation occurs).  To accommodate this, Rlog supports the 
notion of an event, which is simply a logical grouping of logged data.  The Rlog functions 
support selectively enabling and disabling collection of events, and the database output 
type enables one to access data selectively by event. 

3.1.3. Change-only logging 

There are many instances when the developer wants to log a value only when it changes.  
This capability is useful, for example, when dealing with internal state variables.  The 
idea is to register which variables to track and then to output all changed values 
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periodically.  Because true change-only logging would require access to operating system 
commands, we have instead implemented a matched pair of “register” and “flush” 
commands.  Users can register variables that they want to monitor.  Then, whenever the 
user calls a flush command any registered variables that have changed since the last flush 
are logged.  While not ideal (for instance, any changes that occur between flush 
commands are not logged), these commands are useful for variables that change 
infrequently but at well-defined points in the programs.     

3.1.4. Conditional logging 
There are instances when the developer will want to log a value only under certain 
conditions.  For example, only log the tank pressure when it is above 100psi.  While users 
can do this by embedding an Rlog call inside a conditional statement (if-then), we have 
provided functions that perform this type of computation.  The advantage is that the 
conditional logging functions interact with other Rlog functions in beneficial ways.  For 
instance, if a condition is associated with a change-only variable, that variable gets 
logged only if it changes and the condition is met. 

3.1.5. Function entry and exit 

An important part of debugging distributed programs is knowing whether and when 
functions have been called and when they have finished executing.  In addition to 
providing a functional interface to facilitate this type of logging, we have developed 
scripts that will read a C/C++ file and automatically add function entry and exit logging 
commands to each function in that file.  Whenever a function is entered or exited, that 
function name is automatically logged to the database.  If users also want to log the 
parameters to that function, they can use the Rlog functions described above to do so.   

3.2. Output plug-in modules 

Rlog enables users to output the logged information to various media, with various 
formats.  Which output types are active at any one time can be set at run time.  The 
plugin libraries associated with each output type are loaded dynamically.  This allows 
users to change library functions without recompiling their programs.  For portability, 
Rlog uses the GNU Libtool to use dynamically loadable modules (similar to shared 
libraries) for the output plugins. 

There are currently four types of output plugins available (additional plugins are easily 
implemented – details for implementing custom plugins are available on the Rlog web 
site).  The implemented plugins are: 

• Text plugins, which include screen and file plugins.  Text plugins output the 
logged data in ASCII, using either a format specified in the Rlog command or the 
default format.  

• Database plugins, which include two SQL plugins.  They differ in the schema 
used for storing the data in a relational database.  The database may reside either 
on the local machine or a remote machine.  More details of the database are given 
in the next section. 

• Socket plugins are used to send the logged data to the Rlog server on a remote 
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machine.  The Rlog server handles time stamping the remote data to synchronize 
distributed processes (see Section 2.4). The TCP plugin uses raw sockets for 
sending the data.  The IPC plugin sends the data using the Carnegie Mellon 
message-passing package (www.cs.cmu.edu/~IPC). 

• The NULL plugin is used to disable logging.  This allows the logging code to 
remain in the client in case future debugging is needed.  The NULL plugin has 
minimal impact on program performance (see Section 2.5). 

3.3. Database Logging 

One option for storing collected data is an SQL relational database. Using this output 
type gives the user access to powerful search and retrieval capabilities. We have used 
MySQL as the database because it is widely available and free (www.mysql.com).  
Overall, we feel that the use of a standard relational database offers much in terms of 
portability and flexibility in search and retrieval.  Since using SQL is not natural for most 
users, we have written C/C++ wrappers to insert data into the database and to extract data 
from the database.  In this way, the user of our logging tools does not need to know SQL 
or anything about the schemas used to represent the logged data. 

The database schema consists of 12 tables: one for the logged event data and one each for 
the different data types that Rlog supports.  The EventData table assigns a unique 
identifier to each entry and stores the event name and timestamp for each logging call.  
The individual data type tables contain the information on the logged variables.  These 
records are tied to the EventData table entry using the Id generated in that table.   

3.4. Distributed logging 

By using one of the socket output plugins (see Section 2.2), data from different programs 
running on different machines can be logged to a central location.  The computer at the 
central location must be running an rlogServer program, which collects all the data on a 
host computer and sends it to a database (or other location). In this way, data from 
distributed processes can be collected and synchronized together, in one location. The 
rlogServer uses the same output plugins as a regular Rlog application.  The specific 
output plugin to use is specified on the command line.  To output to a database the 
database must be on the same machine as rlogServer and the MySQL plugin must be 
specified.   

When collecting data generated by different processes on distributed machines, there 
must be some way to timestamp the data using a common clock.  When the rlogServer 
first receives a data message from a remote computer, it starts a new thread that sends a 
request to that remote computer for its time offset.  It then applies that offset to the 
received message and all subsequent messages from that remote computer.  To account 
for clock drift, it polls the remote computer every two minutes to update the time offset.  
If the remote computer gives no response then the timestamp is unchanged.  The remote 
machine must be running an rlogTimeServer, which we developed to determine the 
offset.  This server takes minimal CPU time since it is called very infrequently. 
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Time offsets are calculated based on the formula published in RFC 2030 [Mills 1996].  
RFC 2030 claims accuracy to “within a few tens of milliseconds.” The following is the 
relevant part of RFC 2030 for our purposes: 

“To calculate the roundtrip delay d and local clock offset t relative to the 
server, the client sets the transmit timestamp in the request to the time of 
day according to the client clock in NTP timestamp format. The server 
copies this field to the originate timestamp in the reply and sets the receive 
timestamp and transmit timestamp to the time of day according to the 
server clock in NTP time-stamp format. 

“When the server reply is received, the client determines a Destination 
Timestamp variable as the time of arrival according to its clock in NTP 
timestamp format. The following table summarizes the four timestamps: 

Timestamp Name  ID When Generated  

Originate Timestamp  T1 time request sent by client 
Receive Timestamp  T2 time request received by server 
Transmit Timestamp  T3 time reply sent by server 
Destination Timestamp T4 time reply received by client 

Then the roundtrip delay d and local clock offset t are defined by:  
d = (T4 - T1) - (T2 - T3) and t = ((T2 - T1) + (T3 - T4))/2” 

3.5. Rlog performance 

We have run some performance measures of the Rlog libraries for the different output 
types.  The platform used for these tests was the following: 
• CPU: Intel Pentium III @ 800Mhz  
• Memory: 256 Meg.  
• OS: RedHat Linux 6.2  
• Model: Dell Dimension XPS B800r desktop computer 

The following table shows the number of seconds it takes to call the basic unconditional 
rlog function 100 times for each of the different output types that we have implemented. 
These numbers are an average of 10 sets of 100 calls for all data types and include the 
initialization and cleanup functions required by Rlog. As one can see, turning off logging 
(the Null output type) has minimal impact on the run time of the program.  Even sending 
data over the network uses only several tens of milliseconds per call.  The MySQL results 
are with the SQL database running on the same computer as the logging program.  If the 
MySQL database is run remotely then the timings are identical to the TCP results since 
that is how data is transferred to the remote database. 

Output Type Time for 100 rlog Calls 

Null 9 milliseconds 
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File 53 milliseconds 

Screen 534 milliseconds 

TCP 711 milliseconds 

IPC 750 milliseconds 

MySQL 382 milliseconds 

We instrumented the AES control system described in Section 2 using the Rlog tools 
described here.  Fifty sensor and actuator values were logged using change-only logging.  
These included the thermocouples, power, dewpoint, valves, blowers, heaters, etc.  Three 
days of AES control during July 2001 were logged.  [Reid: We need to say something 
more informative; Was any of the data distributed? How much data? How long did 
it take the programmer to add in the logging statements? Etc]. In the next section, we 
describe some simple data visualization tools for looking at logged data.  Then, we 
describe a data analysis tool that was developed and applied to the data.   

4. Data visualization 
People have a great facility for visually detecting patterns in data sets.  Such patterns, or 
deviations from expected patterns, may indicate sources of faults in the system.  To aid 
users in such analysis, we have developed some simple tools, implemented in Java, that 
retrieve data from a logging database and display the data graphically.  The tools 
automatically analyze the data records to extract the types and names of all variables and 
events stored in the database (see Figure 2). Users interact with the visualization tools to 
view selected subsets of the data over time or to plot variable values against one another. 

The visualization tools support three major types of display: 1) raw data, 2) plotting of 
values against time, and 3) plotting of two values against one another.  The raw data 
display is just a textual listing of the data values of a variable over time. More useful are 
plots of the data where one can visualize relationships within, and between, variables.  
One can plot the value of variables over time, either separately or together.  For instance, 
Figure 3 shows two values plotted against time.  From the plots, one can readily detect 
regularities in the dewpoint data and the discrete change in the thermocouple data.  
Another useful type of display is to view the values of two variables plotted against each 
other.  This type of plot makes explicit the functional relationships between variables, 
and enables one to spot anomalies in those relationships.  For instance, it is clear from 
Figure 4 that the relationship between heater power and the thermocouple is very non-
linear. 

Finally, the data analysis tool (described in the next section) produces counterexamples in 
the form of intervals of time in which a desired property is found not to hold.  We have 
developed a visualization capability, and integrated it with the data analysis tool, to 
display such counterexamples graphically.  This lets the developer see exactly what the 
program was doing when a violation occurred.  For instance, Figure 5 shows a plot of an 
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interval that has been flagged as containing a violation of one of the logical properties 
that are being checked.  Note that this is still a very preliminary data viewer and that, 
while visualization is important, the emphasis in this project has not been on 
visualization. In particular, we hope to make use of the results from other researchers to 
further this aspect of the project.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two variables plotted against time. 

Figure 2.  List of items from the database that can be viewed. 



12

 

 

 

 

 

 

 

 

 

 

 

5. Interval Temporal Checking Logic (ITCL) 
Once the data has been collected, we want to analyze it to verify program correctness.  
We present a real-time interval logic that is used to specify desired properties about the 
behavior of real-time distributed programs. We also describe a tool that we have 
developed to analyze a logged execution trace to determine whether it is consistent with 
the formal specification.  

When we began this project, we anticipated developing an analysis tool for an existing 
temporal logic.  However, as we surveyed related work (see Section 2) it became clear 
that no existing logic had the combination of features and usability that we desired.  In 

Figure 4. Two variables plotted against each other. 

Figure 5.  Plotting an interval in which an error is suspected
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particular, we wanted a more intuitive logic, since our work is intended to yield practical 
tools for software testers.  This led us to develop a new logic called Interval Temporal 
Checking Logic (ITCL), which enables concise specification of simple concepts but also 
has the expressiveness to handle very sophisticated temporal relationships, both 
qualitative and quantitative.  ITCL borrows concepts from both RTL [Jahanian and Mok 
1987] and RTIL [Razouk and Gorlik 1989].  From RTL, we adopt the idea that time 
passes between events, where events are instantaneous, as opposed to many transition 
systems in which the states are temporal and transitions are instantaneous. From RTIL, 
we adopt the idea of constructing intervals from time points that may, or may not, 
correspond to actual events.  We also adopt some powerful interval construction 
operators and the ability to index into sets of entities.  Because our focus is on practical 
validation of executing programs, ITCL adds new operators that facilitate the expression 
of complex timing and relational properties inherent in real-time distributed software. In 
particular, we include operators to handle sets of intervals, events, and timestamped 
values. 

5.1. Basic concepts  

While temporal logic provides good low-level mechanisms for expressing sequences of 
events, reasoning about repeated behaviors over an entire computation is often awkward. 
Given our interest in checking and debugging program executions, ITCL includes as 
basic concepts time points, events (representing actions and changes in system status), 
intervals that are composed of time points and events, and sets of these entities.  Having 
time points, events, and intervals as basic concepts in the logic allows us to define timing 
and relational properties in a straightforward way.  Having sets of these entities as basic 
concepts allows us to concisely specify global invariants and periodic behaviors over a 
complete execution. 

5.1.1. Time points, events, and values 

Time points are the basic primitives in ITCL.  A time point (φ) is an object with an 
associated real-valued time (time(φ) ∈ ℜ). A time point can be defined as an absolute 
point (e.g., noon on January 3, 2003) or in relationship to other time points (e.g., 5 
seconds after some event occurs). 

An event (ω) is a time point that has additional information, including the type of the 
event and the values of variables associated with the event. Each log entry in the trace file 
defines an event. Log entries record relevant changes to the system, including the start 
and end of significant actions, changes to state variables, and perceived changes in the 
environment. 

A value (ψ) is a time point that has an associated value (our implementation of ITCL 
supports numeric, Boolean, and string values). Values can be derived from events.  For 
instance, if φf is the event signifying that the flow of a pipe changes, then φf.flow is the 
value representing the rate of that flow at the time the event occurs.  Similarly, (5 + 
φf.flow) is the value representing 5 units plus the flow at the time that φ occurs. 
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5.1.2. Intervals 

Intervals (γ) are defined in terms of a pair of time points (φstart and φend). The semantics 
are that the interval is closed on the left and open on the right (i.e., [φstart, φ end)). 
Therefore, the starting and ending time points must be distinct (as a result, ITCL cannot 
represent single-point intervals).  Given an interval γ, ↑γ represents φstart and ↓γ 
represents φend.  The duration of the interval is given by duration(γ) = time(↓γ) – 
time(↑γ). 

Often, the start and end time points of intervals are associated with events.  For instance, 
if φSA is an event that signals the start of action A and φEA is an event that ends the same 
occurrence of A then the interval composed of φSA and φEA represents the time during 
which that instance of action A occurs.  In addition, we consider the whole trace itself to 
be a distinct interval. 

5.1.3. Sets 

While time points, events, values, and intervals are useful concepts, we need to refer to 
sets of these concepts in order to represent and reason about behaviors of programs over 
whole executions.  ITCL allows any of the basic concepts to be aggregated into sets of 
similar concepts. 

An event set (Ω) aggregates events of a given type in a trace file.  For example, if we 
have an event type start_A then we can define an event set that corresponds to all the 
times that action A began execution. Event sets can also be defined as Boolean 
combinations of other event sets (union, difference, etc.) and as conditional filters (e.g., 
all events of some type occurring within a given time window, or all events whose 
associated variable values exceed a given threshold).  Section 5.2 describes how event 
sets can be defined in ITCL. 

Time point sets (Φ) can be derived from event sets.  For example, one can define a time 
point set corresponding to the event set start_A, which represents the time points at 
which those events occurred. From this set, we can create a new time point set 
representing the time points five seconds after the start_A events occur. We might need 
such a set, for instance, to specify that no event of some other type occurs within five 
seconds after any start_A event occurs. 

Finally, interval sets (Γ) can be defined in many ways, including defining them from 
individual intervals, from pairs of time point sets, or from relationships between events 
(see Section 5.2).  Interval sets enable us to specify global or periodic properties over the 
complete program execution, or some subset of it. 

Time point sets (similarly for event sets and value sets) have an implied ordering of their 
elements, based on their times of occurrence (for points with the same timestamp, some 
canonical ordering is chosen, such as lexigraphically by event type). Thus, we can index 
sets, so that Φ[i] is the ith element of the set, according to the ordering. 
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Figure 6 shows several events, time points, intervals, and associated sets.  Note that we 
use two indexes to denote items in a set. The first index represents the set (based o0n the 
type element) and the second represents the order of the item in the set. For example, φ5.1 
represents the first item of time point set Φ5. 
 

5.2. ITCL Syntax and Semantics 

This section describes the syntax and semantics of ITCL for defining basic concepts 
(time points, events, values, intervals, and sets), and for defining specifications that can 
be checked against trace files.  To facilitate the twin goals of concise specification of 
simple concepts and support for specification of sophisticated concepts, ITCL has many 
ways for defining each of these basic concepts. 

5.2.1. Defining time points, events, and values 

As described previously, a time point can be defined by an absolute time (real number) or 
by an event or value (both of which are types of time points). For an interval γ, ↑γ and ↓γ 
represent the start and end time points of the interval, respectively.  The “extension” 
operators, φ→t and t←φ, represent the time points t time units after φ and t time units 
before φ, respectively.  Formally, time(φ→t) = time(φ) + t and time(t←φ) = time(φ) - t. 

Events can be defined in only one way – with respect to entries in a trace file.  In 
particular, event sets are defined simply by providing the name of the event type.  
Individual events are defined by indexing into event sets, as described in Section 5.1.3. 

A values can be defined from a constant (e.g., 5 or “green”) or by a variable associated 
with an event (φ.var). For instance, in one of our test programs, the event type train1cv 
is logged whenever a state variable associated with train train1 changes value.  The value 
of the speed variable for the train1cv event is then referred to as train1cv.speed 
(technically, since train1cv specifies an event set, train1cv.speed actually defines a 
value set).   

Figure 6. Events, event sets, time points, time point sets, intervals and interval sets. 

ω1.1  

φ1.1  

γ1.1 γ2.1

γi.j 

ω4.1 

φ4.1 
ω1.i
φ1. i

ω1.2  

φ1.2  
φ5.1 φ5.2

Event set Ω1 = {ω1.1, ω1.1, …} 
Time point set Φ1 = {φ1.1, φ1.2, …} 
Interval set Γ1 = {γ1.1, γ1.2, …} 

γ1.2 
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Arithmetic operations (+, -, *, /) and relations (<, ≤, >, ≥, =, ≠) can be used to define new 
values.  These work in the obvious way.  For instance, if ψ1 and ψ2 are numeric values 
then (ψ1 + ψ2) is a numeric value as well. Values and constants can be combined (e.g., 
ψ+5), since a value can be defined from a constant. The timestamp of a value created 
from a constant is the time of the start of the execution trace. The timestamp of a value 
that results from an operation between two other values is the timestamp of the later 
value: time(ψ1 op ψ2) = max(time(ψ1), time(ψ2)). 

5.2.2. Defining intervals 

Intervals in ITCL are defined using the "search" operators φ⇒T (search forward) and 
T⇐φ (search backward), where φ is referred to as the start point, and T is either a time 
point or time point set. If T is a time point, the search operator defines an interval 
composed of the two points: 

φ1⇒ φ2 ≡  [φ1, φ2),  time(φ1) < time(φ2) 
   ⊥, otherwise 
φ2⇐ φ1 ≡  [φ2, φ1),  time(φ2) < time(φ1) 
   ⊥, otherwise 

where ⊥ is the undefined interval, which indicates that there is no interval for which the 
definition holds. 

If T is a time point set, the idea is to search for the closest time point in the set that occurs 
strictly after (before) the start point. 

φ1⇒ Φ ≡  [φ1, φi),  ∃ 0≤i<|Φ| (time(φ1) < time(Φ[i]) ∧∀0≤j<i time(Φ[j]) ≤ time(φ1)) 
   ⊥,  ¬∃ 0≤i<|Φ| time(φ1) < time(Φ[i]) 
Φ⇐ φ1 ≡  [φi, φ1),  ∃ 0≤i<|Φ| (time(φ1) > time(Φ[i]) ∧∀i<j<|Φ| time(Φ[j]) ≥ time(φ1)) 
   ⊥,  ¬∃ 0≤i<|Φ| time(φ1) > time(Φ[i]) 

Multiple search operators can be included in the same interval definition, but all of them 
must search in the same direction.  Thus, (φ1⇒ Φ1⇒ Φ2) is valid, but (φ1⇒ Φ1⇐ Φ2) is 
not. If no start time point is specified, search begins from the start (⇒ T) or end (T⇐) of 
the log file. Thus, (⇒) represents the interval that includes the whole execution trace. 
Figure 7 depicts some interval definitions graphically.  Note that (φ5.1⇒φ9.1) evaluates to ⊥ 
because intervals must always have duration greater than zero. 

  

⇒  

Figure 7. Defining intervals using the search operators.

φ2.1 φ3.1 φ4.1 φ1.2 φ5.1 φ9.1 φ8.1 φ2.3 φ1.3 φ3.3 φ1.1 

φ1.3⇒Φ2  
φ1.2⇒φ2.3  

φ1.1⇐φ2.1  Φ1⇐φ2.3  

φ3.2 

φ2.1⇒Φ4⇒Φ3 φ1.1⇒φ2.1  
φ5.1⇒φ9.1  
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5.2.3. Defining sets 

All of the operators that are defined for time points, events, values, and intervals are also 
defined for sets of those entities. In all cases, except for operations and relations applied 
to value sets, the semantics is to create a new set by applying the operator to each element 
of the given set.  Thus, for instance, the “extension” operator as applied to time point sets 
is defined as:  

Φ→t ≡ { φ→t  : φ ∈ Φ } 
and the “search” operator as applied to time point sets is defined as: 

Φ⇒ T ≡ { φ ⇒T  : φ ∈ Φ ∧ (φ ⇒T) ≠ ⊥ } 
Note that the forward and backward search operators are not symmetric. For instance, in 
Figure 8 each of the time point sets Φi consists of the time points φi.j. While there are 
three intervals in the interval set Φ1⇒Φ2 there are only two in Φ1⇐Φ2. Note also that the 
interval set Φ9 ⇒ Φ5 is empty, since there is no event of type φ5 occurring strictly after φ9. 

The rules for arithmetic operations or relations over value sets are defined somewhat 
differently.  If one of the operands is a value (or constant), then the resulting set is 
created, as usual, by applying the operation to each element of the value set.  However, if 
both operands are value sets, the semantics are a bit more complex.  The basic idea is that 
value sets are interpreted such that the value persists from one point until the next.  That 
is, for two values Ψ[i] and Ψ[i+1], it is assumed that the value at any time t, time(Ψ[i]) ≤ 
t < time(Ψ[i+1]) is the same as Ψ[i].  Given this, the formal semantics for arithmetic 
operations on two value sets are: 

Ψ1 op Ψ2 ≡  { Ψ1[i] op Ψ2[j]  : ∀0≤i<|Ψ1|, 0≤j<|Ψ2| time(Ψ1[i]) = time(Ψ2[j]) } 
  ∪ { Ψ1[i] op Ψ2[j]  : ∀0≤i<|Ψ1|, 0≤j<|Ψ2|  

(time(Ψ1[i]) > time(Ψ2[j]) ∧ ∀j<k<|Ψ2| time(Ψ2[k]) > time(Ψ1[i])) } 
  ∪ { Ψ1[i] op Ψ2[j] : ∀0≤i<|Ψ1|, 0≤j<|Ψ2|  

(time(Ψ2[j]) > time(Ψ1[i]) ∧ ∀i<k<|Ψ1| time(Ψ1[k]) > time(Ψ2[j])) } 

Note that the resulting set can have more items than either of the original sets, but never 
more than both together.  There is one practical consideration that complicates the 
semantics a bit.  Since we are focusing on validation of asynchronous, concurrent 
systems, the value sets derived from different event types do not necessarily start at the 
same time.  To produce intuitively reasonable results, ITCL “aligns” the value sets being 
operated upon by implicitly setting time(Ψ1[0]) = time(Ψ2[0]) = min(time(Ψ1[0]), 
time(Ψ2[0])). 

φ2.1 φ3.1 φ4.1 φ1.2 φ5.1 φ9.1 φ8.1 φ2.2 φ1.3 φ3.3 φ1.1 

Φ1⇒Φ2  

Φ1⇒Φ2  

Φ1⇐Φ2  Φ1⇐Φ2 

φ3.2 

Φ2⇒Φ4⇒Φ3 Φ1⇒Φ2  

Figure 8. Interval sets.
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The semantics for relations between value sets are similar, except that the result is the set 
of all intervals where the relation holds. Figure 9 shows several examples of operations 
on value sets. 
 

In addition to set operations that are, essentially, extensions of the operations on 
individual elements, ITCL provides several operations that are applicable only to sets.  
An interval in brackets [γ] defines an interval set that contains the single interval γ.  A 
condition in brackets [P] is the set of intervals over the complete execution trace during 
which P holds continuously.  For example, Figure 10 illustrates the interval set [m8.s>10], 
where the value of variable s associated with event m8 is greater than 10. 

The expression [x: T st P] defines a set where the condition P holds over all elements of 
the set T, where T can be either a time point set (Φ) or an interval set (Γ). Formally: 

[x: T st P] ≡ { x  : x ∈ T ∧ P\x } 
For example, [x: m8.s st (x == 1)] produces a value set that contains all items of variable 
s associated with event m8 whose value is 1 (see Figure 10).  Similarly, the expression 
[x:Φ1⇒Φ3 st duration(x) < 0.01 ] is the set of intervals from Φ1⇒Φ3 that have short 
duration. 

ITCL includes several operators that combine interval sets. The union (Γ1 ∪ Γ2) and 
intersection (Γ1 ∩ Γ2) operators define interval sets that contain all the intervals in both 
sets, or only those in both sets, respectively.  For the purpose of these operators, two 
intervals are considered to be “the same” if they have the same start and end points.  The 

Figure 10. Defining intervals from conditions. 

m8{S=15} m8{S=18} m8{S=8} m8{S=15} m8{S=1} m8{S=1} m8{S=8} m8{S=12} 

[m8.s>10]  [m8.s>10]  

Figure 9. Examples of operations on value sets.

s5_less60 s5_less60

train1cv{  
speed = 10} 

  

train1cv{  
speed = 20} 

  

train1cv{  
speed = 25}

  

train1cv{  
speed = 10}

  

train1cv{  
speed = 20}

  

train2cv{  
speed = 50} 

  

train2cv{  
speed = 5} 

  

s1pluss2 =15  s1pluss2 =25 s1pluss2 =30 s1pluss2 =15 s1pluss2 =25  s1pluss2 =70 s1pluss2 =15  

(a) speed1 = train1cv.speed; 
(b) s5 = speed1*5;  
(c) s1pluss2 = speed1 + train2cv.speed; 
(d) s5 less60 = s5 < 60;
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union operator can be used to specify statements such as “after doing actions A1, A2 or 
A3, communications with Earth have to be restarted” (↓(A1 ∪ A2 ∪ A3) ⇒ Restart). 

The union of two sets is not that useful because it may contain intervals that overlap. 
Similarly, the intersection operator is not very useful because combines only intervals 
that are exactly the same.  More useful are the disjunction (Γ1 | Γ2) and conjunction (Γ1 
& Γ2) operators that define interval sets that contain the subintervals that occur in either 
of the sets, or both of the sets, respectively.  Both operators produce interval sets where 
no two elements overlap.  The disjunction operator produces the largest subintervals that 
include elements in either of the two sets.  Thus, disjunction can produce sets that have 
fewer elements than either of the operand sets. The conjunction operator produces the 
largest subintervals that overlap both of the two sets.  A similar operator, subtraction (Γ1 
- Γ2) produces subintervals that overlap the first set, but not the second.  Subtraction can 
produce sets that have either more, or fewer, elements than the operand sets, depending 
on the way the intervals overlap.  Formally: 

within(t, γ) ≡  time(↑γ) ≤ t ≤ time(↓γ) 
overlaps(γ, γ′)  ≡  (time(↑γ′)<time(↑γ)≤time(↓γ′)) ∨ (time(↑γ′)≤time(↓γ)<time(↓γ′)) 
Γ1 | Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∨ ∃ γ2 ∈ Γ2  within(t, γ2)) ∧ 

      ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2  (overlaps(γ, γ1) ∨ overlaps(γ, γ2)) 
Γ1 & Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∧ ∃ γ2 ∈ Γ2  within(t, γ2)) ∧ 

        ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2  (overlaps(γ, γ1) ∧ overlaps(γ, γ2)) 
Γ1 - Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∧ ¬∃ γ2 ∈ Γ2  within(t, γ2)) ∧ 

        ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2  (overlaps(γ, γ1) ∧ ¬overlaps(γ, γ2)) 

These operators can be used to specify statements such as “the valve should be turned off 
whenever A1 and A2 are both finished” (↓(A1 | A2) ⇒ Valve_off), and “condition P never 
holds unless action A occurs” ([P] & ((⇒) – A) = {}), where ((⇒) – Γ) represents all the 
subintervals over the execution trace not in Γ, and is analogous to the complement of Γ. 

5.3. Defining Specifications 

Specifications represent the rules to be evaluated against a trace file. ITCL specifications 
are first-order logical expressions, augmented with special operators to deal with sets and 
relationships between sets. ITCL is composed of a sequence of statements, which can 
either be assignment statements (≡) or logical expressions.  Statements end with a colon, 
for instance, Γ1 ≡ Φ1⇒ Φ2; Logical expressions are formed using the standard Boolean 
connectives (∧, ∨, ¬, →) and the first-order quantifiers (∀, ∃).   

Expressions can also be composed of relational operators (<, ≤, >, ≥, =, ≠). The result of 
these operators is either a Boolean or an interval set, depending on the operands. The 
result is Boolean if the operands are both scalar (e.g., 2 < 5); if either operand is a set, the 
result will be the set of intervals where the relation holds. All relational operators can be 
applied to either numeric and string values, or sets of those values. In addition, the 
operators = and ≠ can be used to compare events and intervals. 



20

5.3.1. Referencing different parts of intervals 

Logical expressions can be evaluated with respect to intervals. For instance, we may want 
to specify, “before executing action A, the system has to be in state s.” However, since an 
interval can include several events and some expressions are functions of data associated 
with events, an expression may have different values depending on which subinterval is 
evaluated. To remove such ambiguities, we define a “minimum interval” as the interval 
between two consecutive events. This implies that the value of any expression evaluated 
over a minimum interval will be constant. 

We use the following notation to specify conditions that hold in different minimum 
intervals associated with an interval (see Figure 11): 
γ ∆ P – P is evaluated in the first minimum interval of γ. 
γ ∇ P – P is evaluated in the last minimum interval of γ. 
γ β P – P is evaluated in the minimum interval immediately following γ. The expression 

is true if there is no following interval. 
γ α P – P is evaluated in the minimum interval immediately preceding γ. The expression 

is true if there is no preceding interval. 
γ ⊗ P – The expression is true if P is true during all the minimum intervals of γ. 
γ ◊ P – The expression is true if P is true during at least one of the minimum intervals of 

γ. 

For example γ α (s<2) is true if the value of s is less than 2 in the minimum interval 
before γ.  These operators are also defined for intervals and interval sets. For example, 
the expression γ1 ∇ γ2 means that the last minimal interval of γ1 must also belong to γ2. 
Using these types of expressions we can specify constraints such as “action A2 must be 
active immediately after action A1” (A1 β A2), “at the start of action A1, A2 must be 
active” (A1 ∆ A2), and “action A2 must be active whenever A1 is active” (A1 ⊗ A2). 

5.3.2. Derived temporal relations 

Although the notation that we have presented so far is sufficient for expressing a wide 
range of both qualitative and metric temporal relationships, we have found it useful to 
define higher-level relations to more succinctly represent commonly used temporal 
relations between events and intervals.  The definitions of these relations in terms of 
more primitive notation is given in Table 1 and described below. 

The intersects relation (γ1 intersects γ2) is true if there are some time points that belong 
to both intervals γ1 and γ2. The inside relation can be applied to either a time point or an 

γ 

γ α P γ∆ P γ ∇ P γ β P 

Figure 11. References to different parts of an interval. 
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interval.  The expression φ inside γ2 is true if time point φ falls within interval γ2, while 
γ1 inside γ2 is true if interval γ1 falls completely within interval γ2.  The include relation 
is the inverse of inside. 

The isbefore relation is defined between pairs of time points. The most general form is φ1 
isbefore[t1, t2] φ2, which is interpreted as that φ2 occurs at least t1 time units after φ1, but 
no more than t2 time units after φ1 occurs. The interval can be either open or closed, as 
shown in Table 1. Omitting t1 ([, t2]) is equivalent to a lower limit of zero ([0, t2]).  
Similarly, omitting t2 ([t1,]) indicates an unconstrained upper limit ([t1, ∞]). Both can be 
omitted ([,]), which is same as [0, ∞], which, in turn, is equivalent to the ≤ relation. 

Table 1. Derived temporal relations 

DERIVED RELATION EQUIVALENT EXPRESSION 
γ1 intersects γ2 time(↑γ1 )  < time(↓γ2)  ∧ time(↓γ1 )  > time(↑γ2) 
φ inside γ2 time(↑γ2) ≤ time(φ) ∧ time(↓γ2 )  > time(φ) 
γ1 inside γ2 time(↑γ1 )  ≥ time(↑γ2)  ∧ time(↓γ1 )  ≤ time(↓γ2) 
γ1 include γ2 time(↑γ1 )  ≤ time(↑γ2)  ∧ time(↓γ1 )  ≥ time(↓γ2) 
γ1 include φ time(↑γ1 )  ≤ time(φ)  ∧ time(↓γ1 )  > time(φ) 
φ1 isbefore[c, t2] φ2 time(φ1) + t1 ≤ time(φ2) ∧ time(φ1) + t2 ≥ time(φ2) 
φ1 isbefore(t1, t2] φ2 time(φ1) + t1 < time(φ2) ∧ time(φ1) + t2 ≥ time(φ2) 
φ1 isbefore[t1, t2) φ2 time(φ1) + t1 ≤ time(φ2) ∧ time(φ1) + t2 > time(φ2) 
φ1 isbefore(t1, t2) φ2 time(φ1) + t1 < time(φ2) ∧ time(φ1) + t2 > time(φ2) 

5.4. The ITCL interpreter 

We have implemented an interpreter that verifies ITCL specifications against trace files 
created by Rlog.  The interpreter, written in C++, can handle both the file and database 
output types produced by Rlog.   For the file type, the interpreter reads in and parses the 
ASCII files.  For the database type, the interpreter uses functions to request relations from 
the database, which in turn issues SQL requests.  While, currently, the interpreter works 
on complete traces in batch mode, we are considering ways to extend it to verify 
specifications in real time, while the execution trace is produced. 

Our current implementation is rather straightforward. The specifications are input in an 
ASCII format that includes translations of the special symbols used in the ITCL 
language. The interpreter parses the specifications into a hierarchical parse tree and then 
evaluates the parse tree bottom up.  The interpreter creates an event set for each event 
type mentioned in the specification by querying the database for all events of the given 
type (or by collecting events from the file).  Then, the interpreter evaluates each 
expression bottom up, creating new time point sets, value sets, or interval sets, using the 
rules described in the previous two sections. 

The current implementation is not particularly efficient. For operations that take sets as 
operands, the interpreter often has to evaluate each element of one set against all the 
elements of the other.  This can be very time consuming if the sets are large. In many 
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cases, however, optimizations are possible based on the fact that time point sets and 
interval sets can be sequentially ordered based on their underlying timestamps. In such 
cases, rather than operating on the cross product of the operand sets (an O(n2) operation), 
the interpreter goes through each operand set once, in order (an O(n) operation).  For 
instance, in doing arithmetic operations on value sets, the interpreter “aligns” the two 
value sets, as described in Section 5.2.3, and then finds the next value in either set that 
has the smaller timestamp (or taking both next values if the timestamps are the same) and 
creates a new value at that time by applying the arithmetic operator. This continues until 
the ends of both value sets are reached.  While we have identified many situations in 
which such operations can be performed, only a handful of them are currently 
implemented.   

When the interpreter finds a situation in which an expression evaluates to false, it 
displays a counterexample that describes that situation.  The counterexample includes the 
values of any quantified variables that contribute to the expression being false, as well as 
the description and timestamp of any item of a set that is implicated in the 
counterexample. For instance, the following specification: 

∀ it2_1 ∈ main_and_bl_on (it2_1 ⊗ (RLogChangedValue.FlowMeter07 > 1)) 
which in ASCII form is encoded as: 

forall it2_1: main_and_bl_on { 
          during it2_1 always ((RLogChangedValue.FlowMeter07 > 1)) 
} 

may produce the following counterexample:  
When it2_1 has the value: Intervalvar=  
   Start: sec = 996622397 usec = 137780 
    End: sec = 996622428 usec = 447794  
 the condition (forall) becomes false.  
Operation ALWAYS is FALSE because: 
CONDITION doesn't hold at the beginning of interval:   
sec = 996622397 usec = 137780 

which indicates that there is an interval of the set main_and_bl_on in which the value of 
flow meter 7 is not always greater than 1.   

5.4.1. Special features of the interpreter 

The ITCL interpreter provides several features that are, technically, not part of the logic, 
but which are very useful in practice for specifying systems, understanding 
counterexamples, and debugging specifications. 

One such feature is the ability to explicitly specify the initial values of variables. Note 
that, since logging is asynchronous, there may be some time between the start of the trace 
until the first time a variable value is logged.  By default, the interpreter extends the 
values of variables back to the beginning of the trace. To override the default behavior, 
users can declare different initial values in a limits file. The format of the file is the same 
as that produced by Rlog, except that where Rlog includes a timestamp field, the limits 
file uses the reserved word initially: 

RLogChangedValue initially Thermocouple29  int 60 WeightScale02 float 10 



23

Similarly, the user can define the final value of a variable.  This is useful in case the 
logging is ended before the program finishes and some events that would have occurred 
afterwards are not logged.  For instance, if every event of type A is eventually followed 
by an event of type B, and logging is ended after an A event is produced but before the 
corresponding B event, then the interpreter would determine that a counterexample to the 
rule exists at the end of the trace.  To prevent this, we can define final values for variables 
using the same syntax as above, except for using the reserved word finally. 

Other special features of the interpreter facilitate understanding of counterexamples. 
While the interpreter will indicate what events and values are directly related to the 
counterexample, one often needs to know additional conditions and values of the 
different variables at the time the problem occurred.  To get a feel for the range of values 
in value sets, the interpreter supports functions that give the maximum of a numerical 
value set (maxvalue), the minimum value (minvalue), and the average (avgvalue). The 
print operator displays information about an expression. For example, to display the 
maximum value of the temperature of the Thermocouple29 sensor stored in a variable of 
the event RlogChangedValue, one can write: 

temp_hx29 = RLogChangedValue.Thermocouple29; 
print maxvalue(temp_hx29); 

This produces both the value and the time at which the maximum value occurs: 
Longvar = 181 
sec = 996622420 usec = 367780 

The interpreter includes conditional and iteration expressions that have procedural 
semantics, rather than the logical semantics of implication and universal quantification 
that are part of ITCL.  The syntax of the conditional expression is:  

if (<condition> ) <expression>; 
The iteration expression has the following syntax: 

forall <iterator variable>:<initial value>:<end condition>  <expression> ; 
In both cases, expression may be a sequence of statements, delimited by braces “{}”.   

For example, the following expressions will print all values and times where the variable 
Thermocouple29 is greater than 170. 

tm29 = RLogChangedValue.Thermocouple29; 
forall i:1:(i< cardinal(tm29))  { 
        if (tm29[i] > 170) print tm29[i]; 
        i = i+1; 
}; 

5.5. Using ITCL to validate the Water Recovery System 

We tested the ability of ITCL to detect problems in the execution of the Water Recovery 
System described in Section 2.  The specifications, presented in detail in Appendix A, 
were generated by interacting closely with the engineer who developed the automated 
control system for the WRS. To exercise the counterexample generation feature, some of 
the specifications were modified so that they would evaluate to false. 
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One specification is that is should be the case that when HeaterPower is greater than 
zero then Thermocouple29 should increase to 160 and then keep at that level.  In ITCL, 
this would be represented as: 

hp_pos ≡ [RLogChangedValue.HeaterPower > 0]; 
th29 ≡ RLogChangedValue.Thermocouple29; 
th29160 ≡ [tmp: th29 st (tmp > 160)]; 
hp_pos_includeth160 ≡ [tmp: hp_pos st (∃ t29 ∈ th29160 (tmp include t29))]; 
hp_pos_after160 ≡ (hp_pos – (↑hp_pos_includeth160 ⇒ th29160)) 
∀ interval ∈ hp_pos_after160 (interval ⊗ (th29 > 160)); 

which would translate to the following ASCII encoding: 
hp_pos = [RLogChangedValue.HeaterPower > 0]; 
th29 = RLogChangedValue.Thermocouple29; 
th29160 = [tmp: th29 st (tmp > 160)]; 
hp_pos_includeth160 = [tmp: hp_pos st exists t29:th29160 (tmp include t29)]; 
hp_pos_after160 = (hp_pos -- (start(hp_pos_includeth160) -> th29160)) 
forall interval : hp_pos_after160 (during interval always (th29 > 160)); 

When tested against the WRS data we collected, the ITCL interpreter produced the 
following counterexample: 

is FALSE because:  
When interval has the value: Intervalvar=  
   Start: sec = 996622398 usec = 147794 
    End: sec = 996622428 usec = 447794  
 the condition (forall) becomes false  
 
Operation ALWAYS is FALSE.  
 BECAUSE:  
 CONDITION doesn’t hold in:   
sec = 996622406 usec = 227777 

which indicates that ITCL found (at least) one interval of hp_pos_after160 during which 
the value of Thermocouple29 is not greater than 160. 

While each specification listed in Appendix A took less than a second to evaluate, we do 
not present exact run times for the interpreter since the data set used for these 
experiments is rather small (only a few hours of WRS data was recorded). 

6. Conclusions 
Taken together, the data collection and analysis tools offer developers of distributed 
control program the ability to record and visualize what their programs are doing and 
verify the correct behavior of individual executions.  Of critical importance is the 
usability of the tool suite – if the tools are not easy to use then developers will not adopt 
them.  We have tried to make our logging library as easy as the standard C language 
printf facility.  The temporal logic ITCL requires more of a learning curve, but we plan to 
provide graphical and textual interfaces to that as well.  We encourage anyone interested 
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to download our logging tools at http://www.traclabs.com/rlog and provide us feedback 
on how they can be improved. 
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Appendix A. Specifications for Water Recovery System. 

This appendix lists specifications that we encoded for the WRS.  To aid in understanding 
the specifications, Table 2 shows the mapping between ITCL symbols and the ASCII 
encoding used by the interpreter. 

Table 2. Symbol equivalence 
ITCL  Program  ITCL  Program  ITCL  Program  

¬ ! ∈ : ↑ start 
∧ && ⇒ -> ↓ end 
∨ || ⇐ <- ∆ beginning … holds
→ => → ~> ∇ ending … holds 
≡ = ← <~ β after … holds 
= == ∪ union α before … holds 
≠ != ∩ intersection ⊗ during … always 
≤ <= & & ◊ during … some 
≥ >= | | ⊥ none 
∀ forall - -- |A| cardinal(A) 
∃ exists     

Some of the specifications were purposely modified to show how the program reports 
counterexamples.  While in the actual system, the counterexamples are displayed 
separately, for clarity here the counterexamples are included directly following their 
associated specifications. 

 
#    When BlowerPower greater than 0 then FlowMeter07 > 0 
flow07 = RLogChangedValue.FlowMeter07; 
forall c1 : [RLogChangedValue.BlowerPower > 0] {  
        during c1 always (flow07 >0) 
}; 
 
#    When HeaterPower is greater than 0 then Thermocouple11  
#       should increase 
hp_pos = [RLogChangedValue.HeaterPower >0]; 
th11 = RLogChangedValue.Thermocouple11; 
th11intervals = th11 -> th11; 
increasing = [tmp:th11intervals st during tmp always hp_pos]; 
forall inc : increasing { 
  th11(time(start(inc))) < th11(time(end(inc))) 
}; 
####### 
 is FALSE because:  
When inc has the value: Intervalvar=  
   Start: sec = 996622420 usec = 367780 
    End: sec = 996622421 usec = 377797  
 the condition (forall) becomes false  
 
Operation LESS is FALSE because the operands are:  
 First Operand:  
Longvar= 25  
Second Operand:  
Longvar= 24 
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####### 
 
#    When HeaterPower is 0 then Thermocouple11 should decrease 
hp_zero = [RLogChangedValue.HeaterPower == 0]; 
decreasing = [tmp:th11intervals st during tmp always hp_zero]; 
forall inc : decreasing { 
  th11[time(start(inc))] > th11[time(end(inc))] 
}; 
 
#  If FlowMeter08 > 0 AND BlowerPower > 0 and HeaterPower > 0 then 
#                Switch2State, Switch2State and Switch1State should 
#                go from 1 to 0 in order over some period of time 
conditions = [((RLogChangedValue.FlowMeter08 >0) &&  
               (RLogChangedValue.BlowerPower >0) &&  
               (RLogChangedValue.HeaterPower >0))];  
 
#    When HeaterPower is greater than 0 then Thermocouple29 should 
#       increase until 160 
hp_pos = [RLogChangedValue.HeaterPower >0]; 
th29 = RLogChangedValue.Thermocouple29; 
th29160 = [tmp:th29 st tmp > 160]; 
hp_pos_includeth160 = [tmp:hp_pos st exists t29:th29160 {tmp include t29}]; 
hp_pos_not_includeth160 = hp_pos -- hp_pos_includeth160; 
hp_pos_till160 = start(hp_pos_includeth160) -> th29160; 
hp_increasing = hp_pos_till160 union hp_pos_not_includeth160; 
th29intervals = th29 -> th29; 
increasing = [tmp:th29intervals st during tmp always hp_increasing]; 
forall inc : increasing { 
  (th29(time(start(inc))) < th29(time(end(inc))))  
}; 
####### 
 is FALSE because:  
When inc has the value: Intervalvar=  
   Start: sec = 996622138 usec = 567800 
    End: sec = 996622203 usec = 217788  
 the condition (forall) becomes false  
 
Operation LESS is FALSE because the operands are:  
 First Operand:  
Longvar= 24  
Second Operand:  
Longvar= 23 
####### 

 
#   When HeaterPower is greater than 0 then Thermocouple29 should 
#       increase until 160 and then keep on that level 
hp_pos_after160 = hp_pos -- hp_pos_till160; 
forall interval : hp_pos_after160 { 
  during interval always (th29>160) 
}; 
####### 
 is FALSE because:  
When interval has the value: Intervalvar=  
   Start: sec = 996622398 usec = 147794 
    End: sec = 996622428 usec = 447794  
 the condition (forall) becomes false  
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Operation ALWAYS is FALSE.  
 BECAUSE:  
 CONDITION doesn't hold in:   
sec = 996622406 usec = 227777 
####### 
 
# After turn on the blower power and the general power, 
# the FlowMeter07 must return readings greater than 1 
main_and_bl_on = [( RLogChangedValue.Switch3State == 1) && 
                  ( RLogChangedValue.Switch1State == 1)  ]; 
forall it2_1: main_and_bl_on { 
       during it2_1 always ((RLogChangedValue.FlowMeter07 > 1)) 
}; 
####### 
 is FALSE because:  
When it2_1 has the value: Intervalvar=  
   Start: sec = 996622397 usec = 137780 
    End: sec = 996622428 usec = 447794  
 the condition (forall) becomes false  
 
Operation ALWAYS is FALSE.  
 BECAUSE:  
 CONDITION doesn't hold at the beginning of interval:   
sec = 996622397 usec = 137780 
####### 
 
# First it is false because, initially, the switch*State has no value. 
# Then it is false because of the delay. 
 
# We can also consider some delay T1: 
T1 = 2; 
with_delay =   start(main_and_bl_on)~>T1 ->end(main_and_bl_on); 
# This is in case T1 is greater than the interval where pw is on 
with_delay =   with_delay && main_and_bl_on; 
forall it2_1: with_delay { 
       during it2_1 always  ((RLogChangedValue.FlowMeter07 > 1)) 
}; 
 
# After turn on the blower power and the general power, 
# the FlowMeter07 must return readings greater than 1 
# and the FlowMeter08 between 7 and 8 
main_and_bl_on = [( RLogChangedValue.Switch3State == 1) && 
                  ( RLogChangedValue.Switch1State == 1)  ]; 
forall it2_1: main_and_bl_on { 
       during it2_1 always ((RLogChangedValue.FlowMeter07 > 1) && 
                            (RLogChangedValue.FlowMeter08 > 7) && 
                            (RLogChangedValue.FlowMeter08 < 8)) 
}; 
####### 
 is FALSE because:  
When it2_1 has the value: Intervalvar=  
   Start: sec = 996622397 usec = 137780 
    End: sec = 996622428 usec = 447794  
 the condition (forall) becomes false  
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Operation ALWAYS is FALSE.  
 BECAUSE:  
 CONDITION doesn't hold at the beginning of interval:   
sec = 996622397 usec = 137780 
####### 
 
# We can also consider some delay T1: 
T1 = 2; 
with_delay =   start(main_and_bl_on)~>T1 ->end(main_and_bl_on); 
# This is in case T1 is greater than the interval where pw is on 
with_delay =   with_delay && main_and_bl_on; 
forall it2_1: with_delay { 
       during it2_1 always  ((RLogChangedValue.FlowMeter07 > 1) && 
                            (RLogChangedValue.FlowMeter08 > 7) && 
                            (RLogChangedValue.FlowMeter08 < 8)) 
}; 

 
#  Value of DewPoint1 has to be between 83 and 93 
during -> always ((RLogChangedValue.DewPoint1 <= 93) &&  
                   (RLogChangedValue.DewPoint1 >= 83)); 
 
#  Temperature of TC10 cannot be greater than 60 
during -> always (RLogChangedValue.Thermocouple10 <= 60); 

 
#  Temperature of TC27 cannot be greater than 30 
during -> always (RLogChangedValue.Thermocouple11 <= 30); 
 
#  Temperature of TC29 cannot be greater than 180 
during -> always (RLogChangedValue.Thermocouple29 <= 180); 
####### 
 is FALSE because:  
Operation ALWAYS is FALSE.  
 BECAUSE:  
 CONDITION doesn't hold in:   
sec = 996622420 usec = 367780 
####### 
 
#  The difference of temperature between the wick and the HX input 
#     cannot be greater than 35 
temp_wick = RLogChangedValue.Thermocouple10; 
temp_hx = RLogChangedValue.Thermocouple11; 
during -> always ((temp_wick - temp_hx) < 35); 

 


