
A Suite of Tools for Debugging Distributed Autonomous
Systems

David Kortenkamp1, Reid Simmons2, Tod Milam1, and Joaquín L. Fernández2

1Metrica Inc./TRACLabs 2School of Computer Science
Carnegie Mellon University

1012 Hercules
Houston TX USA 77058

{korten, tmilam}@traclabs.com

5000 Forbes Avenue
Pittsburgh, PA 15214 USA

{reids, joaquin}@cs.cmu.edu

ABSTRACT

This paper describes a set of tools that enables developers to log and analyze the
run-time behavior of autonomous control systems. A feature of the tools is that they can
be applied to distributed systems. The logging tools enable developers to instrument C or
C++ programs so that data indicating state changes can be logged automatically in a
variety of formats. In particular, run-time data from distributed systems can be
synchronized into a single relational database. Tools are also provided for visualizing the
logged data. Analysis to verify correct program behavior is done using a new interval
logic that is described in this paper. The logic enables system engineers to express
temporal specifications for the autonomous control program that are then checked against
the logged data. The data logging, visualization, and interval logic analysis tools are all
fully implemented. Results are given from a NASA distributed autonomous control
system application.

1

1. Introduction
Debugging and verifying distributed control programs is notoriously difficult, yet such
control programs are becoming more and more common for complex applications.
Examples include spacecraft control [Muscettola et al 1998], process control [Bonasso
2001], multiple robot applications [Simmons et al 2000], and production plant control
[Musliner and Krebsbach 1998]. In each case, concurrent programs, often on separate
computers, generate control commands for single, or multiple, devices.

The difficulty in debugging such applications is directly related to their distributed
nature. When a problem arises, it is often difficult to isolate the problem to one specific
control module due to timing constraints, interprocess communication, and
synchronization. The traditional dynamic method for debugging sequential software has
no timing constraints. For such systems, cyclic debugging (running the program until an
error shows up, examining the program state, inserting assertions, and re-executing the
program to obtain additional information) is commonly used [Tsai et al 1996]. However,
there are several reasons why this approach cannot be applied to distributed control
programs:
• Often the distributed processes cannot be paused for examination, since they are

controlling physical hardware.
• There is no central, global state (or even global clock) to reference state values, which

makes it difficult to reason about the “state” of the system at a given time.
• Due to latencies and timing issues, distributed control programs are inherently non-

deterministic and non-repeatable.

Moreover, the types of questions that developers of distributed, autonomous control
systems need answered are often temporal in nature and refer to interdependencies
between modules. For instance, developers may have questions such as:
• Do two states in separate control programs always change together?
• What is the latency between the change in one and a change in the other?
• When event X occurs in one module, how long before event Y occurs in a second

module?

Traditionally, such questions are answered by instrumenting programs to write data to
files, collecting and collating the files, and inspecting the execution traces to look for
patterns of interest. Each phase of this procedure is typically done by hand and is
application-specific. Thus, the process tends to be tedious and error prone.

Our approach is to develop application-independent tools that are tailored for the
collection, display, and analysis of data for distributed autonomous systems. This paper
presents a suite of data collection and display tools and a temporal, interval-based logic
that facilitate debugging and verifying distributed programs. The data collection tools
enable developers to easily instrument control programs and to synchronize the data
collected in a distributed system. The display tools enable developers to visually spot
trends in the data. The interval logic is used to analyze the logged data to determine

2

whether the execution of a distributed program is consistent with a formal description of
the program’s behavior. The logic includes mechanisms to deal with real time and has
powerful mechanisms to specify relationships between events, temporal intervals, and
sets of these constructs. The data collection, display, and logic tools all work together via
a common relational database, which facilitates data storage and retrieval.

1.1. Overview

Our approach consists of three sets of tools: Tools for instrumenting distributed, real-time
systems and logging execution data into a database, tools for doing temporal analysis of
execution traces, and tools for visualizing data. The tools are connected through a
relational database. Figure 1 shows the general architecture. A library of real-time data
collection tools called Rlog is used to instrument each of the distributed processes. The
Rlog tools send data corresponding to events (state changes) to a centralized database.
After execution, an analysis tool, based on a customized interval temporal checking logic
(ITCL), uses the data in the database to verify specifications of the distributed system.
Counterexamples produced by the analysis tool can be used to help debug the system. In
addition, relationships between the data can be visualized using display tools. The rest of
this paper describes each of these pieces in detail, and presents results of using the tools
in a distributed autonomous control system developed at NASA.

Figure 1. General Architecture

Rules
(specifications)

Report
(test result)

Database
(data)

ITCL DB server

ITCL LOGIC RLOG USER

parser

data
access

evaluate

LOG DATA

Process

Process

Process

3

1.2. Related work

Work on collecting data from real-time programs has resulted in a product from Real-
Time Innovations Inc. called Stethoscope [Schneider 1995]. Stethoscope allows for data
collection, display and modification. However, it is limited to real-time programs
running under VxWorks and does not offer support for the kind of high-level, cross-
system debugging that distributed systems require.

There are recently developed tools for debugging and verifying parallel systems that are
related to our research. For example, ParaGraph [Heath and Etheridge 1991] provides a
variety of visualizations of a parallel system. There are also tools for debugging and
verifying multi-threaded programs, including tnfview [Kleiman et al 1996]. However,
none of these tools can offer the cross-system and high-level debugging and verification
support needed by autonomous systems.

As for analyzing the data after it has been collected, a temporal logic is a good candidate
to define the specifications to check on the execution trace data since it can specify
properties of event and state sequences. However, traditional linear-time temporal logic,
such as PTL [Gabbay et al 1980] and ITL [Moszkowski 1994] or branching-time, such as
CTL [Emerson and Clarke 1982], cannot specify quantitative aspects of time. The
concepts of eventuality, fairness, etc. that these languages support are all basically
qualitative treatments of time. For example, the expression �(p→◊q) can be interpreted
in linear-time propositional temporal logic as “Every stimulus p is eventually followed by
a reaction q.” However, it is not possible to express “Every event p is followed by a
reaction q in the next 4 time units.”

To overcome this shortcoming, three different methods are typically used to represent
metric time [Tsai et al 1996]. One method is to use explicit clock variables, such as a
global clock, and bind a variable to the corresponding time when an event occurs. This
approach is used in TPTL [Alur and Henzinger 1990] and XCTL [Harel et al 1990].
Another approach uses bounded temporal operators to restrict the time span between two
events. Metric TL [Koymans 1990] is one example of this approach. The third method
uses a time function, such as the one used in RTL [Jahanian and Mok 1987].

Most of these logics were designed for model checking and they restrict their language to
be able to apply verification methods. However, other logics such as Event-based Real-
time Logic (ERL) [Chen et al 1991] and Real-time Interval Logic (RTIL) [Razouk and
Gorlik 1989] were developed to yield practical tools for software testers running the
system and checking the specifications over the trace data.

2. A Running Example
A key goal of this research was to be able to handle complex, real-world distributed
systems. To that end, we have tested our logging and analysis tools on an automated,
distributed system to control an advanced water recovery system (WRS) at NASA

4

Johnson Space Center. The WRS control system consists of four components. We chose
one, the air evaporation system (AES), for this test. The entire WRS system and its
controllers are described in [Bonasso 2001]. We introduce the AES here and refer to it
throughout the rest of the paper.

2.1. The Water Recovery System

The AES consists of an evaporation loop of heated air blowing through a wick and a
condensing heat exchanger (HX). The wick is integrated with a brine reservoir such that
when there is brine in the reservoir, the wick will absorb it. Hot air is blown through the
wick, evaporating the brine and filling the air with water vapor. When the hot air passes
through the heat exchanger, the water vapor condenses into a tank.

When the AES is integrated with the rest of the WRS, a pump is used to flow the
condensate to the post processor whenever the level in the condensate tank reaches a
certain value. There is also an overflow/brine feed tank to catch any overflow from the
wick reservoir. There are weight scales on the overflow tank and on the condensate tank.
A manual pump is used to pump the brine back into the reservoir from the overflow tank,
which also serves to prime the system for stand-alone testing.

2.2. Sensors

Starting from the blower, there is a heater with an automatic high-temperature cut-off that
heats the air to around 60°C, then the wick, and then the HX. There are 15 thermocouples
on the wick, and several around the evaporation loop. Only the heater thermocouple
(TC29), wick input (TC10) and HX input (TC27) are used for control, but all are logged.
There is a differential pressure sensor across the wick and one across the HX, but these
are also only for logging. For control, there is a relative humidity sensor (DW01) in the
wick (for drying it out), a mass flow meter (FM07) in the evaporation loop, and a liquid
flow meter (FM08) in the HX. Two other temperature sensors associated with the
dewpoint sensor and gas flow meter are also only logged. Additionally there are
ammeters for the blower (PW01), the heater power (PW02), and power to the devices
(PW03 - general power).

The wick reservoir has high, mid, and low level switches. There is no direct feedback
from the relays used to turn on the blower, heaters, and cooling water solenoid valve.
Instead, the power sensors and the flow meters are used as indirect feedback.

2.3. Control

The main purpose of the control is to start the evaporation process (coolant flowing,
blower on, heaters on) whenever the low reservoir switch is on, and to stop the process
whenever that switch is off. The heater is actively controlled to maintain air input to the
wick at 60°C (the heater element temperature is around 175°C). Monitoring is necessary
for air and chiller water flow, wick out temperature, and wick dewpoint. The HX chiller
water solenoid valve, which is normally open to allow flow, is closed whenever the AES
is shut down, so as not to inordinately lower the temperature of the surrounding tubing.

5

In addition, when integrated with the rest of the WRS, AES operations are augmented to
include determining whether the condensate will go to the post processor or be recycled,
and whether to flow condensate to the post processor when the RO is in purge. An
automated three-way valve determines whether AES condensate goes to the post
processor or is rejected back to the feed tank. The AES monitors the state of the RO and
the level in the condensate tank to try to flow condensate to the post processor whenever
the RO is not flowing water to it. This approach insures a longer duty cycle for the post
processor.

3. Data Collection
The data collection demands of autonomous control systems range from low-level
sensory data and the program’s internal state to high-level goals and state transitions.
The data collection routines should be easy to use, flexible, and have minimal impact on
the run-time of the system. In particular, in designing our data collection routines we
imposed the following requirements:
• Data collection must be real time
• Distributed data must be synchronized through logging to a database
• Data must be collected with flexible sampling rates
• Data must easily be grouped into logical sets
• Data must be collected conditionally (e.g., allowing data only in certain ranges to be

collected, or only when it has changed, or only for certain logical sets)

In addition, a primary requirement was ease of use. Our goal was to replicate the
flexibility and ease-of-use of the printf facility in C, while allowing for more fine-grained
control and for distributed operation. In essence, we have implemented a remote printf
capability that is called Rlog.

Rlog is a tool that enables developers to instrument their programs and direct the output
data to a variety of different locations, including the screen, a file, a remote computer,
and a database. As with printf, Rlog can directly handle variables whose types are any of
the primitive C data types (character, short, integer, long, floating point, double float,
string). More complex data structures can be logged by defining a sequence of these
primitives. In addition, Rlog enables developers to specify that, periodically, logged
variables whose values have recently changed should be collected, that certain subsets of
the variables should, or should not, be logged, and that logging should occur only when
the values of variables fall within certain ranges. These capabilities provide an
expressive power similar to printf, but with much more flexibility as to when, where, and
how to collect the data.

A final important requirement was portability. Rlog works on the following platforms:
Linux, Solaris, IRIX, and NetBSD. We are currently working on a VxWorks port. As
much as possible, the code avoids operating system dependent calls to allow for easy
porting to new platforms. While Rlog is geared towards the C/C++ programming
language, other programming languages (such as Lisp and Java) can access them through
foreign function calls.

6

3.1. Rlog functions

Rlog is implemented as a set of libraries. The libraries, which all share a common
interface, are each specialized for logging output to one type of medium (screen, file,
database, etc.). Developers use Rlog by adding calls to the library functions throughout
their application programs. The developer indicates which output types are needed and,
at run time, the necessary libraries are loaded dynamically (as plug-ins).

The Rlog interface is divided into a number of different functionalities. There are setup
and cleanup functions, unconditional logging functions, change-only logging, conditional
logging, and function entry/exit logging functions. The following subsections present
each of these capabilities and describe their functional interfaces.

3.1.1. Setup and cleanup
Before using any of the logging functions, Rlog must be initialized. The conceptual
model is that there are different output types (screen, file, database, etc.) and which
output type(s) are active for a given run can be specified dynamically, at run time. The
output types are specified symbolically – for instance, one could be called “debug1” –
and a configuration file is used to map between the symbolic name and the location of the
associated Rlog library for that output type. The configuration file can also include
options that are specific for particular output types (such as the file name to use if logging
to a file).

3.1.2. Unconditional logging

In many instances, one needs to log some aspect of the internal state whenever execution
reaches a certain point in the program. For instance, one might want to log the pose (x, y,
z, roll, pitch, yaw) of a robot immediately after the pose is calculated, or log the
temperature and pressure of a tank immediately before a decision is made about what
action to take. The basic logging functions all take a set of variables and output the
values of the variables, annotated with a timestamp and the name of the host on which the
program is running. The logging functions are all optimized to minimize impact on the
user program (see Section 2.5).

Sometimes, one cannot collect all the appropriate data at one point in the program, but
one still wants to treat the collection of variables as a logical unit. This could be due
either to variable scooping (local variables may be inaccessible at certain points in the
program) or temporal scooping (for instance, one may want to log aspects of the state
both before and after an operation occurs). To accommodate this, Rlog supports the
notion of an event, which is simply a logical grouping of logged data. The Rlog functions
support selectively enabling and disabling collection of events, and the database output
type enables one to access data selectively by event.

3.1.3. Change-only logging

There are many instances when the developer wants to log a value only when it changes.
This capability is useful, for example, when dealing with internal state variables. The
idea is to register which variables to track and then to output all changed values

7

periodically. Because true change-only logging would require access to operating system
commands, we have instead implemented a matched pair of “register” and “flush”
commands. Users can register variables that they want to monitor. Then, whenever the
user calls a flush command any registered variables that have changed since the last flush
are logged. While not ideal (for instance, any changes that occur between flush
commands are not logged), these commands are useful for variables that change
infrequently but at well-defined points in the programs.

3.1.4. Conditional logging
There are instances when the developer will want to log a value only under certain
conditions. For example, only log the tank pressure when it is above 100psi. While users
can do this by embedding an Rlog call inside a conditional statement (if-then), we have
provided functions that perform this type of computation. The advantage is that the
conditional logging functions interact with other Rlog functions in beneficial ways. For
instance, if a condition is associated with a change-only variable, that variable gets
logged only if it changes and the condition is met.

3.1.5. Function entry and exit

An important part of debugging distributed programs is knowing whether and when
functions have been called and when they have finished executing. In addition to
providing a functional interface to facilitate this type of logging, we have developed
scripts that will read a C/C++ file and automatically add function entry and exit logging
commands to each function in that file. Whenever a function is entered or exited, that
function name is automatically logged to the database. If users also want to log the
parameters to that function, they can use the Rlog functions described above to do so.

3.2. Output plug-in modules

Rlog enables users to output the logged information to various media, with various
formats. Which output types are active at any one time can be set at run time. The
plugin libraries associated with each output type are loaded dynamically. This allows
users to change library functions without recompiling their programs. For portability,
Rlog uses the GNU Libtool to use dynamically loadable modules (similar to shared
libraries) for the output plugins.

There are currently four types of output plugins available (additional plugins are easily
implemented – details for implementing custom plugins are available on the Rlog web
site). The implemented plugins are:

• Text plugins, which include screen and file plugins. Text plugins output the
logged data in ASCII, using either a format specified in the Rlog command or the
default format.

• Database plugins, which include two SQL plugins. They differ in the schema
used for storing the data in a relational database. The database may reside either
on the local machine or a remote machine. More details of the database are given
in the next section.

• Socket plugins are used to send the logged data to the Rlog server on a remote

8

machine. The Rlog server handles time stamping the remote data to synchronize
distributed processes (see Section 2.4). The TCP plugin uses raw sockets for
sending the data. The IPC plugin sends the data using the Carnegie Mellon
message-passing package (www.cs.cmu.edu/~IPC).

• The NULL plugin is used to disable logging. This allows the logging code to
remain in the client in case future debugging is needed. The NULL plugin has
minimal impact on program performance (see Section 2.5).

3.3. Database Logging

One option for storing collected data is an SQL relational database. Using this output
type gives the user access to powerful search and retrieval capabilities. We have used
MySQL as the database because it is widely available and free (www.mysql.com).
Overall, we feel that the use of a standard relational database offers much in terms of
portability and flexibility in search and retrieval. Since using SQL is not natural for most
users, we have written C/C++ wrappers to insert data into the database and to extract data
from the database. In this way, the user of our logging tools does not need to know SQL
or anything about the schemas used to represent the logged data.

The database schema consists of 12 tables: one for the logged event data and one each for
the different data types that Rlog supports. The EventData table assigns a unique
identifier to each entry and stores the event name and timestamp for each logging call.
The individual data type tables contain the information on the logged variables. These
records are tied to the EventData table entry using the Id generated in that table.

3.4. Distributed logging

By using one of the socket output plugins (see Section 2.2), data from different programs
running on different machines can be logged to a central location. The computer at the
central location must be running an rlogServer program, which collects all the data on a
host computer and sends it to a database (or other location). In this way, data from
distributed processes can be collected and synchronized together, in one location. The
rlogServer uses the same output plugins as a regular Rlog application. The specific
output plugin to use is specified on the command line. To output to a database the
database must be on the same machine as rlogServer and the MySQL plugin must be
specified.

When collecting data generated by different processes on distributed machines, there
must be some way to timestamp the data using a common clock. When the rlogServer
first receives a data message from a remote computer, it starts a new thread that sends a
request to that remote computer for its time offset. It then applies that offset to the
received message and all subsequent messages from that remote computer. To account
for clock drift, it polls the remote computer every two minutes to update the time offset.
If the remote computer gives no response then the timestamp is unchanged. The remote
machine must be running an rlogTimeServer, which we developed to determine the
offset. This server takes minimal CPU time since it is called very infrequently.

9

Time offsets are calculated based on the formula published in RFC 2030 [Mills 1996].
RFC 2030 claims accuracy to “within a few tens of milliseconds.” The following is the
relevant part of RFC 2030 for our purposes:

“To calculate the roundtrip delay d and local clock offset t relative to the
server, the client sets the transmit timestamp in the request to the time of
day according to the client clock in NTP timestamp format. The server
copies this field to the originate timestamp in the reply and sets the receive
timestamp and transmit timestamp to the time of day according to the
server clock in NTP time-stamp format.

“When the server reply is received, the client determines a Destination
Timestamp variable as the time of arrival according to its clock in NTP
timestamp format. The following table summarizes the four timestamps:

Timestamp Name ID When Generated

Originate Timestamp T1 time request sent by client
Receive Timestamp T2 time request received by server
Transmit Timestamp T3 time reply sent by server
Destination Timestamp T4 time reply received by client

Then the roundtrip delay d and local clock offset t are defined by:
d = (T4 - T1) - (T2 - T3) and t = ((T2 - T1) + (T3 - T4))/2”

3.5. Rlog performance

We have run some performance measures of the Rlog libraries for the different output
types. The platform used for these tests was the following:
• CPU: Intel Pentium III @ 800Mhz
• Memory: 256 Meg.
• OS: RedHat Linux 6.2
• Model: Dell Dimension XPS B800r desktop computer

The following table shows the number of seconds it takes to call the basic unconditional
rlog function 100 times for each of the different output types that we have implemented.
These numbers are an average of 10 sets of 100 calls for all data types and include the
initialization and cleanup functions required by Rlog. As one can see, turning off logging
(the Null output type) has minimal impact on the run time of the program. Even sending
data over the network uses only several tens of milliseconds per call. The MySQL results
are with the SQL database running on the same computer as the logging program. If the
MySQL database is run remotely then the timings are identical to the TCP results since
that is how data is transferred to the remote database.

Output Type Time for 100 rlog Calls

Null 9 milliseconds

10

File 53 milliseconds

Screen 534 milliseconds

TCP 711 milliseconds

IPC 750 milliseconds

MySQL 382 milliseconds

We instrumented the AES control system described in Section 2 using the Rlog tools
described here. Fifty sensor and actuator values were logged using change-only logging.
These included the thermocouples, power, dewpoint, valves, blowers, heaters, etc. Three
days of AES control during July 2001 were logged. [Reid: We need to say something
more informative; Was any of the data distributed? How much data? How long did
it take the programmer to add in the logging statements? Etc]. In the next section, we
describe some simple data visualization tools for looking at logged data. Then, we
describe a data analysis tool that was developed and applied to the data.

4. Data visualization
People have a great facility for visually detecting patterns in data sets. Such patterns, or
deviations from expected patterns, may indicate sources of faults in the system. To aid
users in such analysis, we have developed some simple tools, implemented in Java, that
retrieve data from a logging database and display the data graphically. The tools
automatically analyze the data records to extract the types and names of all variables and
events stored in the database (see Figure 2). Users interact with the visualization tools to
view selected subsets of the data over time or to plot variable values against one another.

The visualization tools support three major types of display: 1) raw data, 2) plotting of
values against time, and 3) plotting of two values against one another. The raw data
display is just a textual listing of the data values of a variable over time. More useful are
plots of the data where one can visualize relationships within, and between, variables.
One can plot the value of variables over time, either separately or together. For instance,
Figure 3 shows two values plotted against time. From the plots, one can readily detect
regularities in the dewpoint data and the discrete change in the thermocouple data.
Another useful type of display is to view the values of two variables plotted against each
other. This type of plot makes explicit the functional relationships between variables,
and enables one to spot anomalies in those relationships. For instance, it is clear from
Figure 4 that the relationship between heater power and the thermocouple is very non-
linear.

Finally, the data analysis tool (described in the next section) produces counterexamples in
the form of intervals of time in which a desired property is found not to hold. We have
developed a visualization capability, and integrated it with the data analysis tool, to
display such counterexamples graphically. This lets the developer see exactly what the
program was doing when a violation occurred. For instance, Figure 5 shows a plot of an

11

interval that has been flagged as containing a violation of one of the logical properties
that are being checked. Note that this is still a very preliminary data viewer and that,
while visualization is important, the emphasis in this project has not been on
visualization. In particular, we hope to make use of the results from other researchers to
further this aspect of the project.

Figure 3. Two variables plotted against time.

Figure 2. List of items from the database that can be viewed.

12

5. Interval Temporal Checking Logic (ITCL)
Once the data has been collected, we want to analyze it to verify program correctness.
We present a real-time interval logic that is used to specify desired properties about the
behavior of real-time distributed programs. We also describe a tool that we have
developed to analyze a logged execution trace to determine whether it is consistent with
the formal specification.

When we began this project, we anticipated developing an analysis tool for an existing
temporal logic. However, as we surveyed related work (see Section 2) it became clear
that no existing logic had the combination of features and usability that we desired. In

Figure 4. Two variables plotted against each other.

Figure 5. Plotting an interval in which an error is suspected

13

particular, we wanted a more intuitive logic, since our work is intended to yield practical
tools for software testers. This led us to develop a new logic called Interval Temporal
Checking Logic (ITCL), which enables concise specification of simple concepts but also
has the expressiveness to handle very sophisticated temporal relationships, both
qualitative and quantitative. ITCL borrows concepts from both RTL [Jahanian and Mok
1987] and RTIL [Razouk and Gorlik 1989]. From RTL, we adopt the idea that time
passes between events, where events are instantaneous, as opposed to many transition
systems in which the states are temporal and transitions are instantaneous. From RTIL,
we adopt the idea of constructing intervals from time points that may, or may not,
correspond to actual events. We also adopt some powerful interval construction
operators and the ability to index into sets of entities. Because our focus is on practical
validation of executing programs, ITCL adds new operators that facilitate the expression
of complex timing and relational properties inherent in real-time distributed software. In
particular, we include operators to handle sets of intervals, events, and timestamped
values.

5.1. Basic concepts

While temporal logic provides good low-level mechanisms for expressing sequences of
events, reasoning about repeated behaviors over an entire computation is often awkward.
Given our interest in checking and debugging program executions, ITCL includes as
basic concepts time points, events (representing actions and changes in system status),
intervals that are composed of time points and events, and sets of these entities. Having
time points, events, and intervals as basic concepts in the logic allows us to define timing
and relational properties in a straightforward way. Having sets of these entities as basic
concepts allows us to concisely specify global invariants and periodic behaviors over a
complete execution.

5.1.1. Time points, events, and values

Time points are the basic primitives in ITCL. A time point (φ) is an object with an
associated real-valued time (time(φ) ∈ ℜ). A time point can be defined as an absolute
point (e.g., noon on January 3, 2003) or in relationship to other time points (e.g., 5
seconds after some event occurs).

An event (ω) is a time point that has additional information, including the type of the
event and the values of variables associated with the event. Each log entry in the trace file
defines an event. Log entries record relevant changes to the system, including the start
and end of significant actions, changes to state variables, and perceived changes in the
environment.

A value (ψ) is a time point that has an associated value (our implementation of ITCL
supports numeric, Boolean, and string values). Values can be derived from events. For
instance, if φf is the event signifying that the flow of a pipe changes, then φf.flow is the
value representing the rate of that flow at the time the event occurs. Similarly, (5 +
φf.flow) is the value representing 5 units plus the flow at the time that φ occurs.

14

5.1.2. Intervals

Intervals (γ) are defined in terms of a pair of time points (φstart and φend). The semantics
are that the interval is closed on the left and open on the right (i.e., [φstart, φ end)).
Therefore, the starting and ending time points must be distinct (as a result, ITCL cannot
represent single-point intervals). Given an interval γ, ↑γ represents φstart and ↓γ
represents φend. The duration of the interval is given by duration(γ) = time(↓γ) –
time(↑γ).

Often, the start and end time points of intervals are associated with events. For instance,
if φSA is an event that signals the start of action A and φEA is an event that ends the same
occurrence of A then the interval composed of φSA and φEA represents the time during
which that instance of action A occurs. In addition, we consider the whole trace itself to
be a distinct interval.

5.1.3. Sets

While time points, events, values, and intervals are useful concepts, we need to refer to
sets of these concepts in order to represent and reason about behaviors of programs over
whole executions. ITCL allows any of the basic concepts to be aggregated into sets of
similar concepts.

An event set (Ω) aggregates events of a given type in a trace file. For example, if we
have an event type start_A then we can define an event set that corresponds to all the
times that action A began execution. Event sets can also be defined as Boolean
combinations of other event sets (union, difference, etc.) and as conditional filters (e.g.,
all events of some type occurring within a given time window, or all events whose
associated variable values exceed a given threshold). Section 5.2 describes how event
sets can be defined in ITCL.

Time point sets (Φ) can be derived from event sets. For example, one can define a time
point set corresponding to the event set start_A, which represents the time points at
which those events occurred. From this set, we can create a new time point set
representing the time points five seconds after the start_A events occur. We might need
such a set, for instance, to specify that no event of some other type occurs within five
seconds after any start_A event occurs.

Finally, interval sets (Γ) can be defined in many ways, including defining them from
individual intervals, from pairs of time point sets, or from relationships between events
(see Section 5.2). Interval sets enable us to specify global or periodic properties over the
complete program execution, or some subset of it.

Time point sets (similarly for event sets and value sets) have an implied ordering of their
elements, based on their times of occurrence (for points with the same timestamp, some
canonical ordering is chosen, such as lexigraphically by event type). Thus, we can index
sets, so that Φ[i] is the ith element of the set, according to the ordering.

15

Figure 6 shows several events, time points, intervals, and associated sets. Note that we
use two indexes to denote items in a set. The first index represents the set (based o0n the
type element) and the second represents the order of the item in the set. For example, φ5.1
represents the first item of time point set Φ5.

5.2. ITCL Syntax and Semantics

This section describes the syntax and semantics of ITCL for defining basic concepts
(time points, events, values, intervals, and sets), and for defining specifications that can
be checked against trace files. To facilitate the twin goals of concise specification of
simple concepts and support for specification of sophisticated concepts, ITCL has many
ways for defining each of these basic concepts.

5.2.1. Defining time points, events, and values

As described previously, a time point can be defined by an absolute time (real number) or
by an event or value (both of which are types of time points). For an interval γ, ↑γ and ↓γ
represent the start and end time points of the interval, respectively. The “extension”
operators, φ→t and t←φ, represent the time points t time units after φ and t time units
before φ, respectively. Formally, time(φ→t) = time(φ) + t and time(t←φ) = time(φ) - t.

Events can be defined in only one way – with respect to entries in a trace file. In
particular, event sets are defined simply by providing the name of the event type.
Individual events are defined by indexing into event sets, as described in Section 5.1.3.

A values can be defined from a constant (e.g., 5 or “green”) or by a variable associated
with an event (φ.var). For instance, in one of our test programs, the event type train1cv
is logged whenever a state variable associated with train train1 changes value. The value
of the speed variable for the train1cv event is then referred to as train1cv.speed
(technically, since train1cv specifies an event set, train1cv.speed actually defines a
value set).

Figure 6. Events, event sets, time points, time point sets, intervals and interval sets.

ω1.1

φ1.1

γ1.1 γ2.1

γi.j

ω4.1

φ4.1
ω1.i
φ1. i

ω1.2

φ1.2
φ5.1 φ5.2

Event set Ω1 = {ω1.1, ω1.1, …}
Time point set Φ1 = {φ1.1, φ1.2, …}
Interval set Γ1 = {γ1.1, γ1.2, …}

γ1.2

16

Arithmetic operations (+, -, *, /) and relations (<, ≤, >, ≥, =, ≠) can be used to define new
values. These work in the obvious way. For instance, if ψ1 and ψ2 are numeric values
then (ψ1 + ψ2) is a numeric value as well. Values and constants can be combined (e.g.,
ψ+5), since a value can be defined from a constant. The timestamp of a value created
from a constant is the time of the start of the execution trace. The timestamp of a value
that results from an operation between two other values is the timestamp of the later
value: time(ψ1 op ψ2) = max(time(ψ1), time(ψ2)).

5.2.2. Defining intervals

Intervals in ITCL are defined using the "search" operators φ⇒T (search forward) and
T⇐φ (search backward), where φ is referred to as the start point, and T is either a time
point or time point set. If T is a time point, the search operator defines an interval
composed of the two points:

φ1⇒ φ2 ≡ [φ1, φ2), time(φ1) < time(φ2)
 ⊥, otherwise
φ2⇐ φ1 ≡ [φ2, φ1), time(φ2) < time(φ1)
 ⊥, otherwise

where ⊥ is the undefined interval, which indicates that there is no interval for which the
definition holds.

If T is a time point set, the idea is to search for the closest time point in the set that occurs
strictly after (before) the start point.

φ1⇒ Φ ≡ [φ1, φi), ∃ 0≤i<|Φ| (time(φ1) < time(Φ[i]) ∧∀0≤j<i time(Φ[j]) ≤ time(φ1))
 ⊥, ¬∃ 0≤i<|Φ| time(φ1) < time(Φ[i])
Φ⇐ φ1 ≡ [φi, φ1), ∃ 0≤i<|Φ| (time(φ1) > time(Φ[i]) ∧∀i<j<|Φ| time(Φ[j]) ≥ time(φ1))
 ⊥, ¬∃ 0≤i<|Φ| time(φ1) > time(Φ[i])

Multiple search operators can be included in the same interval definition, but all of them
must search in the same direction. Thus, (φ1⇒ Φ1⇒ Φ2) is valid, but (φ1⇒ Φ1⇐ Φ2) is
not. If no start time point is specified, search begins from the start (⇒ T) or end (T⇐) of
the log file. Thus, (⇒) represents the interval that includes the whole execution trace.
Figure 7 depicts some interval definitions graphically. Note that (φ5.1⇒φ9.1) evaluates to ⊥
because intervals must always have duration greater than zero.

⇒

Figure 7. Defining intervals using the search operators.

φ2.1 φ3.1 φ4.1 φ1.2 φ5.1 φ9.1 φ8.1 φ2.3 φ1.3 φ3.3 φ1.1

φ1.3⇒Φ2
φ1.2⇒φ2.3

φ1.1⇐φ2.1 Φ1⇐φ2.3

φ3.2

φ2.1⇒Φ4⇒Φ3 φ1.1⇒φ2.1
φ5.1⇒φ9.1

17

5.2.3. Defining sets

All of the operators that are defined for time points, events, values, and intervals are also
defined for sets of those entities. In all cases, except for operations and relations applied
to value sets, the semantics is to create a new set by applying the operator to each element
of the given set. Thus, for instance, the “extension” operator as applied to time point sets
is defined as:

Φ→t ≡ { φ→t : φ ∈ Φ }
and the “search” operator as applied to time point sets is defined as:

Φ⇒ T ≡ { φ ⇒T : φ ∈ Φ ∧ (φ ⇒T) ≠ ⊥ }
Note that the forward and backward search operators are not symmetric. For instance, in
Figure 8 each of the time point sets Φi consists of the time points φi.j. While there are
three intervals in the interval set Φ1⇒Φ2 there are only two in Φ1⇐Φ2. Note also that the
interval set Φ9 ⇒ Φ5 is empty, since there is no event of type φ5 occurring strictly after φ9.

The rules for arithmetic operations or relations over value sets are defined somewhat
differently. If one of the operands is a value (or constant), then the resulting set is
created, as usual, by applying the operation to each element of the value set. However, if
both operands are value sets, the semantics are a bit more complex. The basic idea is that
value sets are interpreted such that the value persists from one point until the next. That
is, for two values Ψ[i] and Ψ[i+1], it is assumed that the value at any time t, time(Ψ[i]) ≤
t < time(Ψ[i+1]) is the same as Ψ[i]. Given this, the formal semantics for arithmetic
operations on two value sets are:

Ψ1 op Ψ2 ≡ { Ψ1[i] op Ψ2[j] : ∀0≤i<|Ψ1|, 0≤j<|Ψ2| time(Ψ1[i]) = time(Ψ2[j]) }
 ∪ { Ψ1[i] op Ψ2[j] : ∀0≤i<|Ψ1|, 0≤j<|Ψ2|

(time(Ψ1[i]) > time(Ψ2[j]) ∧ ∀j<k<|Ψ2| time(Ψ2[k]) > time(Ψ1[i])) }
 ∪ { Ψ1[i] op Ψ2[j] : ∀0≤i<|Ψ1|, 0≤j<|Ψ2|

(time(Ψ2[j]) > time(Ψ1[i]) ∧ ∀i<k<|Ψ1| time(Ψ1[k]) > time(Ψ2[j])) }

Note that the resulting set can have more items than either of the original sets, but never
more than both together. There is one practical consideration that complicates the
semantics a bit. Since we are focusing on validation of asynchronous, concurrent
systems, the value sets derived from different event types do not necessarily start at the
same time. To produce intuitively reasonable results, ITCL “aligns” the value sets being
operated upon by implicitly setting time(Ψ1[0]) = time(Ψ2[0]) = min(time(Ψ1[0]),
time(Ψ2[0])).

φ2.1 φ3.1 φ4.1 φ1.2 φ5.1 φ9.1 φ8.1 φ2.2 φ1.3 φ3.3 φ1.1

Φ1⇒Φ2

Φ1⇒Φ2

Φ1⇐Φ2 Φ1⇐Φ2

φ3.2

Φ2⇒Φ4⇒Φ3 Φ1⇒Φ2

Figure 8. Interval sets.

18

The semantics for relations between value sets are similar, except that the result is the set
of all intervals where the relation holds. Figure 9 shows several examples of operations
on value sets.

In addition to set operations that are, essentially, extensions of the operations on
individual elements, ITCL provides several operations that are applicable only to sets.
An interval in brackets [γ] defines an interval set that contains the single interval γ. A
condition in brackets [P] is the set of intervals over the complete execution trace during
which P holds continuously. For example, Figure 10 illustrates the interval set [m8.s>10],
where the value of variable s associated with event m8 is greater than 10.

The expression [x: T st P] defines a set where the condition P holds over all elements of
the set T, where T can be either a time point set (Φ) or an interval set (Γ). Formally:

[x: T st P] ≡ { x : x ∈ T ∧ P\x }
For example, [x: m8.s st (x == 1)] produces a value set that contains all items of variable
s associated with event m8 whose value is 1 (see Figure 10). Similarly, the expression
[x:Φ1⇒Φ3 st duration(x) < 0.01] is the set of intervals from Φ1⇒Φ3 that have short
duration.

ITCL includes several operators that combine interval sets. The union (Γ1 ∪ Γ2) and
intersection (Γ1 ∩ Γ2) operators define interval sets that contain all the intervals in both
sets, or only those in both sets, respectively. For the purpose of these operators, two
intervals are considered to be “the same” if they have the same start and end points. The

Figure 10. Defining intervals from conditions.

m8{S=15} m8{S=18} m8{S=8} m8{S=15} m8{S=1} m8{S=1} m8{S=8} m8{S=12}

[m8.s>10] [m8.s>10]

Figure 9. Examples of operations on value sets.

s5_less60 s5_less60

train1cv{
speed = 10}

train1cv{
speed = 20}

train1cv{
speed = 25}

train1cv{
speed = 10}

train1cv{
speed = 20}

train2cv{
speed = 50}

train2cv{
speed = 5}

s1pluss2 =15 s1pluss2 =25 s1pluss2 =30 s1pluss2 =15 s1pluss2 =25 s1pluss2 =70 s1pluss2 =15

(a) speed1 = train1cv.speed;
(b) s5 = speed1*5;
(c) s1pluss2 = speed1 + train2cv.speed;
(d) s5 less60 = s5 < 60;

19

union operator can be used to specify statements such as “after doing actions A1, A2 or
A3, communications with Earth have to be restarted” (↓(A1 ∪ A2 ∪ A3) ⇒ Restart).

The union of two sets is not that useful because it may contain intervals that overlap.
Similarly, the intersection operator is not very useful because combines only intervals
that are exactly the same. More useful are the disjunction (Γ1 | Γ2) and conjunction (Γ1
& Γ2) operators that define interval sets that contain the subintervals that occur in either
of the sets, or both of the sets, respectively. Both operators produce interval sets where
no two elements overlap. The disjunction operator produces the largest subintervals that
include elements in either of the two sets. Thus, disjunction can produce sets that have
fewer elements than either of the operand sets. The conjunction operator produces the
largest subintervals that overlap both of the two sets. A similar operator, subtraction (Γ1
- Γ2) produces subintervals that overlap the first set, but not the second. Subtraction can
produce sets that have either more, or fewer, elements than the operand sets, depending
on the way the intervals overlap. Formally:

within(t, γ) ≡ time(↑γ) ≤ t ≤ time(↓γ)
overlaps(γ, γ′) ≡ (time(↑γ′)<time(↑γ)≤time(↓γ′)) ∨ (time(↑γ′)≤time(↓γ)<time(↓γ′))
Γ1 | Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∨ ∃ γ2 ∈ Γ2 within(t, γ2)) ∧

 ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2 (overlaps(γ, γ1) ∨ overlaps(γ, γ2))
Γ1 & Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∧ ∃ γ2 ∈ Γ2 within(t, γ2)) ∧

 ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2 (overlaps(γ, γ1) ∧ overlaps(γ, γ2))
Γ1 - Γ2 ≡ { γ : ∀time(↑γ)≤t≤time(↓γ) (∃ γ1 ∈ Γ1 within(t, γ1) ∧ ¬∃ γ2 ∈ Γ2 within(t, γ2)) ∧

 ¬∃ γ1 ∈ Γ1, γ2 ∈ Γ2 (overlaps(γ, γ1) ∧ ¬overlaps(γ, γ2))

These operators can be used to specify statements such as “the valve should be turned off
whenever A1 and A2 are both finished” (↓(A1 | A2) ⇒ Valve_off), and “condition P never
holds unless action A occurs” ([P] & ((⇒) – A) = {}), where ((⇒) – Γ) represents all the
subintervals over the execution trace not in Γ, and is analogous to the complement of Γ.

5.3. Defining Specifications

Specifications represent the rules to be evaluated against a trace file. ITCL specifications
are first-order logical expressions, augmented with special operators to deal with sets and
relationships between sets. ITCL is composed of a sequence of statements, which can
either be assignment statements (≡) or logical expressions. Statements end with a colon,
for instance, Γ1 ≡ Φ1⇒ Φ2; Logical expressions are formed using the standard Boolean
connectives (∧, ∨, ¬, →) and the first-order quantifiers (∀, ∃).

Expressions can also be composed of relational operators (<, ≤, >, ≥, =, ≠). The result of
these operators is either a Boolean or an interval set, depending on the operands. The
result is Boolean if the operands are both scalar (e.g., 2 < 5); if either operand is a set, the
result will be the set of intervals where the relation holds. All relational operators can be
applied to either numeric and string values, or sets of those values. In addition, the
operators = and ≠ can be used to compare events and intervals.

20

5.3.1. Referencing different parts of intervals

Logical expressions can be evaluated with respect to intervals. For instance, we may want
to specify, “before executing action A, the system has to be in state s.” However, since an
interval can include several events and some expressions are functions of data associated
with events, an expression may have different values depending on which subinterval is
evaluated. To remove such ambiguities, we define a “minimum interval” as the interval
between two consecutive events. This implies that the value of any expression evaluated
over a minimum interval will be constant.

We use the following notation to specify conditions that hold in different minimum
intervals associated with an interval (see Figure 11):
γ ∆ P – P is evaluated in the first minimum interval of γ.
γ ∇ P – P is evaluated in the last minimum interval of γ.
γ β P – P is evaluated in the minimum interval immediately following γ. The expression

is true if there is no following interval.
γ α P – P is evaluated in the minimum interval immediately preceding γ. The expression

is true if there is no preceding interval.
γ ⊗ P – The expression is true if P is true during all the minimum intervals of γ.
γ ◊ P – The expression is true if P is true during at least one of the minimum intervals of

γ.

For example γ α (s<2) is true if the value of s is less than 2 in the minimum interval
before γ. These operators are also defined for intervals and interval sets. For example,
the expression γ1 ∇ γ2 means that the last minimal interval of γ1 must also belong to γ2.
Using these types of expressions we can specify constraints such as “action A2 must be
active immediately after action A1” (A1 β A2), “at the start of action A1, A2 must be
active” (A1 ∆ A2), and “action A2 must be active whenever A1 is active” (A1 ⊗ A2).

5.3.2. Derived temporal relations

Although the notation that we have presented so far is sufficient for expressing a wide
range of both qualitative and metric temporal relationships, we have found it useful to
define higher-level relations to more succinctly represent commonly used temporal
relations between events and intervals. The definitions of these relations in terms of
more primitive notation is given in Table 1 and described below.

The intersects relation (γ1 intersects γ2) is true if there are some time points that belong
to both intervals γ1 and γ2. The inside relation can be applied to either a time point or an

γ

γ α P γ∆ P γ ∇ P γ β P

Figure 11. References to different parts of an interval.

21

interval. The expression φ inside γ2 is true if time point φ falls within interval γ2, while
γ1 inside γ2 is true if interval γ1 falls completely within interval γ2. The include relation
is the inverse of inside.

The isbefore relation is defined between pairs of time points. The most general form is φ1
isbefore[t1, t2] φ2, which is interpreted as that φ2 occurs at least t1 time units after φ1, but
no more than t2 time units after φ1 occurs. The interval can be either open or closed, as
shown in Table 1. Omitting t1 ([, t2]) is equivalent to a lower limit of zero ([0, t2]).
Similarly, omitting t2 ([t1,]) indicates an unconstrained upper limit ([t1, ∞]). Both can be
omitted ([,]), which is same as [0, ∞], which, in turn, is equivalent to the ≤ relation.

Table 1. Derived temporal relations

DERIVED RELATION EQUIVALENT EXPRESSION
γ1 intersects γ2 time(↑γ1) < time(↓γ2) ∧ time(↓γ1) > time(↑γ2)
φ inside γ2 time(↑γ2) ≤ time(φ) ∧ time(↓γ2) > time(φ)
γ1 inside γ2 time(↑γ1) ≥ time(↑γ2) ∧ time(↓γ1) ≤ time(↓γ2)
γ1 include γ2 time(↑γ1) ≤ time(↑γ2) ∧ time(↓γ1) ≥ time(↓γ2)
γ1 include φ time(↑γ1) ≤ time(φ) ∧ time(↓γ1) > time(φ)
φ1 isbefore[c, t2] φ2 time(φ1) + t1 ≤ time(φ2) ∧ time(φ1) + t2 ≥ time(φ2)
φ1 isbefore(t1, t2] φ2 time(φ1) + t1 < time(φ2) ∧ time(φ1) + t2 ≥ time(φ2)
φ1 isbefore[t1, t2) φ2 time(φ1) + t1 ≤ time(φ2) ∧ time(φ1) + t2 > time(φ2)
φ1 isbefore(t1, t2) φ2 time(φ1) + t1 < time(φ2) ∧ time(φ1) + t2 > time(φ2)

5.4. The ITCL interpreter

We have implemented an interpreter that verifies ITCL specifications against trace files
created by Rlog. The interpreter, written in C++, can handle both the file and database
output types produced by Rlog. For the file type, the interpreter reads in and parses the
ASCII files. For the database type, the interpreter uses functions to request relations from
the database, which in turn issues SQL requests. While, currently, the interpreter works
on complete traces in batch mode, we are considering ways to extend it to verify
specifications in real time, while the execution trace is produced.

Our current implementation is rather straightforward. The specifications are input in an
ASCII format that includes translations of the special symbols used in the ITCL
language. The interpreter parses the specifications into a hierarchical parse tree and then
evaluates the parse tree bottom up. The interpreter creates an event set for each event
type mentioned in the specification by querying the database for all events of the given
type (or by collecting events from the file). Then, the interpreter evaluates each
expression bottom up, creating new time point sets, value sets, or interval sets, using the
rules described in the previous two sections.

The current implementation is not particularly efficient. For operations that take sets as
operands, the interpreter often has to evaluate each element of one set against all the
elements of the other. This can be very time consuming if the sets are large. In many

22

cases, however, optimizations are possible based on the fact that time point sets and
interval sets can be sequentially ordered based on their underlying timestamps. In such
cases, rather than operating on the cross product of the operand sets (an O(n2) operation),
the interpreter goes through each operand set once, in order (an O(n) operation). For
instance, in doing arithmetic operations on value sets, the interpreter “aligns” the two
value sets, as described in Section 5.2.3, and then finds the next value in either set that
has the smaller timestamp (or taking both next values if the timestamps are the same) and
creates a new value at that time by applying the arithmetic operator. This continues until
the ends of both value sets are reached. While we have identified many situations in
which such operations can be performed, only a handful of them are currently
implemented.

When the interpreter finds a situation in which an expression evaluates to false, it
displays a counterexample that describes that situation. The counterexample includes the
values of any quantified variables that contribute to the expression being false, as well as
the description and timestamp of any item of a set that is implicated in the
counterexample. For instance, the following specification:

∀ it2_1 ∈ main_and_bl_on (it2_1 ⊗ (RLogChangedValue.FlowMeter07 > 1))
which in ASCII form is encoded as:

forall it2_1: main_and_bl_on {
 during it2_1 always ((RLogChangedValue.FlowMeter07 > 1))
}

may produce the following counterexample:
When it2_1 has the value: Intervalvar=
 Start: sec = 996622397 usec = 137780
 End: sec = 996622428 usec = 447794
 the condition (forall) becomes false.
Operation ALWAYS is FALSE because:
CONDITION doesn't hold at the beginning of interval:
sec = 996622397 usec = 137780

which indicates that there is an interval of the set main_and_bl_on in which the value of
flow meter 7 is not always greater than 1.

5.4.1. Special features of the interpreter

The ITCL interpreter provides several features that are, technically, not part of the logic,
but which are very useful in practice for specifying systems, understanding
counterexamples, and debugging specifications.

One such feature is the ability to explicitly specify the initial values of variables. Note
that, since logging is asynchronous, there may be some time between the start of the trace
until the first time a variable value is logged. By default, the interpreter extends the
values of variables back to the beginning of the trace. To override the default behavior,
users can declare different initial values in a limits file. The format of the file is the same
as that produced by Rlog, except that where Rlog includes a timestamp field, the limits
file uses the reserved word initially:

RLogChangedValue initially Thermocouple29 int 60 WeightScale02 float 10

23

Similarly, the user can define the final value of a variable. This is useful in case the
logging is ended before the program finishes and some events that would have occurred
afterwards are not logged. For instance, if every event of type A is eventually followed
by an event of type B, and logging is ended after an A event is produced but before the
corresponding B event, then the interpreter would determine that a counterexample to the
rule exists at the end of the trace. To prevent this, we can define final values for variables
using the same syntax as above, except for using the reserved word finally.

Other special features of the interpreter facilitate understanding of counterexamples.
While the interpreter will indicate what events and values are directly related to the
counterexample, one often needs to know additional conditions and values of the
different variables at the time the problem occurred. To get a feel for the range of values
in value sets, the interpreter supports functions that give the maximum of a numerical
value set (maxvalue), the minimum value (minvalue), and the average (avgvalue). The
print operator displays information about an expression. For example, to display the
maximum value of the temperature of the Thermocouple29 sensor stored in a variable of
the event RlogChangedValue, one can write:

temp_hx29 = RLogChangedValue.Thermocouple29;
print maxvalue(temp_hx29);

This produces both the value and the time at which the maximum value occurs:
Longvar = 181
sec = 996622420 usec = 367780

The interpreter includes conditional and iteration expressions that have procedural
semantics, rather than the logical semantics of implication and universal quantification
that are part of ITCL. The syntax of the conditional expression is:

if (<condition>) <expression>;
The iteration expression has the following syntax:

forall <iterator variable>:<initial value>:<end condition> <expression> ;
In both cases, expression may be a sequence of statements, delimited by braces “{}”.

For example, the following expressions will print all values and times where the variable
Thermocouple29 is greater than 170.

tm29 = RLogChangedValue.Thermocouple29;
forall i:1:(i< cardinal(tm29)) {
 if (tm29[i] > 170) print tm29[i];
 i = i+1;
};

5.5. Using ITCL to validate the Water Recovery System

We tested the ability of ITCL to detect problems in the execution of the Water Recovery
System described in Section 2. The specifications, presented in detail in Appendix A,
were generated by interacting closely with the engineer who developed the automated
control system for the WRS. To exercise the counterexample generation feature, some of
the specifications were modified so that they would evaluate to false.

24

One specification is that is should be the case that when HeaterPower is greater than
zero then Thermocouple29 should increase to 160 and then keep at that level. In ITCL,
this would be represented as:

hp_pos ≡ [RLogChangedValue.HeaterPower > 0];
th29 ≡ RLogChangedValue.Thermocouple29;
th29160 ≡ [tmp: th29 st (tmp > 160)];
hp_pos_includeth160 ≡ [tmp: hp_pos st (∃ t29 ∈ th29160 (tmp include t29))];
hp_pos_after160 ≡ (hp_pos – (↑hp_pos_includeth160 ⇒ th29160))
∀ interval ∈ hp_pos_after160 (interval ⊗ (th29 > 160));

which would translate to the following ASCII encoding:
hp_pos = [RLogChangedValue.HeaterPower > 0];
th29 = RLogChangedValue.Thermocouple29;
th29160 = [tmp: th29 st (tmp > 160)];
hp_pos_includeth160 = [tmp: hp_pos st exists t29:th29160 (tmp include t29)];
hp_pos_after160 = (hp_pos -- (start(hp_pos_includeth160) -> th29160))
forall interval : hp_pos_after160 (during interval always (th29 > 160));

When tested against the WRS data we collected, the ITCL interpreter produced the
following counterexample:

is FALSE because:
When interval has the value: Intervalvar=
 Start: sec = 996622398 usec = 147794
 End: sec = 996622428 usec = 447794
 the condition (forall) becomes false

Operation ALWAYS is FALSE.
 BECAUSE:
 CONDITION doesn’t hold in:
sec = 996622406 usec = 227777

which indicates that ITCL found (at least) one interval of hp_pos_after160 during which
the value of Thermocouple29 is not greater than 160.

While each specification listed in Appendix A took less than a second to evaluate, we do
not present exact run times for the interpreter since the data set used for these
experiments is rather small (only a few hours of WRS data was recorded).

6. Conclusions
Taken together, the data collection and analysis tools offer developers of distributed
control program the ability to record and visualize what their programs are doing and
verify the correct behavior of individual executions. Of critical importance is the
usability of the tool suite – if the tools are not easy to use then developers will not adopt
them. We have tried to make our logging library as easy as the standard C language
printf facility. The temporal logic ITCL requires more of a learning curve, but we plan to
provide graphical and textual interfaces to that as well. We encourage anyone interested

25

to download our logging tools at http://www.traclabs.com/rlog and provide us feedback
on how they can be improved.

Acknowledgements
This work was supported by NASA grant NAS2-99020 administered by NASA Ames
Research Center. Pete Bonasso of Metrica Inc./TRACLabs is the chief software engineer
of the WRS control system and worked with us to instrument and analyze the control
code. Mark Shirley of NASA Ames Research Center was a key participant in the
formulation of this project and contributed to its preliminary design.

References
[Alur and Henzinger 1990] R. Alur and T. Henzinger. “Real-time logic: Complexity and

expressiveness.” In Proc. of 5th Symposium on Logic in Computer
Science, Philadelphia, pp. 401-413, June 1990.

[Appelbe et al 1991] W. Appelbe, J. Stasko and E. Kraemer. “Applying Program Visualization
Techniques to Aid Parallel and Distributed Program Development.”
Technical Report TR GIT-GVU-91-08, Georgia Institute of Technology,
1991.

[Bonasso et al 1997] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M.
Slack, “Experiences with an Architecture for Intelligent, Reactive
Agents,” Journal of Experimental and Theoretical Artificial Intelligence,
9, 1997.

[Bonasso 2001] R. Peter Bonasso. “Intelligent Control of a NASA Advanced Water
Recovery System.” in Proc. of International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2001.

[Chen et al 1991] H.Y. Chen, J.J.P. Tsai, and Y. Bi. “An Event-Based Real-Time Logic for
Specify the Behavior and Timing Properties of Real-Time Systems.” In
Proc. of International Conference on Tools for Artificial Intelligence, pp.
210-219, San Jose, California, 1991.

[Emerson and Clarke 1982] A. E. Emerson and E. M. Clarke, “Using branching time logic to
synthesize synchronization skeletons.” Science of Computer
Programming, 1982.

[Gabbay et al 1980] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. “On the temporal analysis
of fairness.” In Proc. of 7th Symposium on Principles of Programming
Languages, 1980.

[Harel et al 1990] D. Harel, H. Lachover, A. Naamad, A. Pnueli. “Explicit clock temporal
logic.” In Proc. of 5th Symposium on Logic in Computer Science,
Philadelphia, pp. 401-413, June 1990.

[Heath and Etheridge 1991] M. Heath and J. Etheridge, “Visualizing the Performance of Parallel
Programs,” IEEE Software 8, 1991.

[Jahanian and Mok 1986] Jahanian, F. and A. K. Mok. “Safety analysis of timing properties in real-
time systems.” IEEE Transactions on Software Engineering 12, 1986.

[Jahanian and Mok 1987] Jahanian, F. and A. K. Mok. “A graph-theorem approach for timing
analysis and its implementation.” IEEE Transactions on Computers, C-
36(8), pp. 961-975, August 1987.

[Kleiman et al 1996] S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads.
SunSoft Press, Mountain View CA, 1996.

26

[Kortenkamp et al 2001] D. Kortenkamp, T. Milam, R. Simmons and J.L. Fernández. “Collecting
and Analyzing Data from Distributed Control Programs.” In Proc.
Runtime Verification, Paris, France 2001.

[Musliner and Krebsbach 1998] D. J. Musliner and K. D. Krebsbach. “Applying a Procedural and
Reactive Approach to Abnormal Situations in Refinery Control.” In Proc.
of Conference on Foundations of Computer-Aided Process Operations
(FOCAPO), Snowbird, Utah, July 1998.

[Koymans 1990] R. Koymans. “Specifying real-time properties with metric temporal
logic.” Journal of Real-Time Systems, 1990.

[Lehr et al 1989] T. Lehr, D. Black, Z. Segall, and D. Vrsalovic, “MKM: Mach Kernel
Monitor Description, Examples, and Measurements,” Technical Report
TR CMU-CS-89-131, Carnegie Mellon University, 1989.

[Mills 1996] D. Mills, “Simple Network Time Protocol (SNTP) Version 4 for IPV4
and OIS” (http://www.faqs.org/rfcs/rfc2030.html) 1996.

[Moszkowski 1994] B. Moszkowski. “Some very compositional temporal properties.” In E.-R.
Olderog, editor, Programming Concepts, Methods and Calculi, pp. 307-
326. Elsevier Science B.V., 1994.

[Muscettola et al 1998] Nicola Muscetttola, P. Pandurang Nayak, Barney Pell and Brian C.
Williams, “Remote Agent: To Boldly Go Where No AI System Has Gone
Before,” Artificial Intelligence, 103(1), 5-47, 1998.

[Razouk and Gorlik 1989] Razouk, R. R. and M. M. Gorlik, “A real-time interval logic for reasoning
about executions of real-time programs.” SIGSOFT SE Notes 114, 1989.

[Schneider 1995] R. Schneider, “Real-time data monitoring and visualization,” Technical
Report White Paper, available at www.rti.com, Real-Time Innovations
Inc., 1995.

[Simmons 1990] R. Simmons. “An Architecture for Coordinating Planning, Sensing and
Action.” In Proc. of Workshop on Innovative Approaches to Planning,
Scheduling and Control, 1990.

[Simmons 1994] R. Simmons, “Structured Control for Autonomous Robots,” IEEE
Transactions on Robotics and Automation, 10, 1994.

[Simmons and Whelan 1997] R. Simmons and G. Whelan, “Visualization Tools for Validating Software
of Autonomous Spacecraft,” in Proc. of International Symposium on
Artificial Intelligence and Robotics and Automation for Space, 1997.

[Simmons et al 2000] R. Simmons, S. Singh, D. Hershberger, J. Ramos and T. Smith. “First
Results in the Coordination of Heterogeneous Robots for Large-Scale
Assembly.” In Proc. of International Symposium on Experimental
Robotics, Honolulu Hawaii, December 2000.

[Tsai and Yang 1995] J. Tsai and S. Yang, Monitoring and Debugging of Distributed, Real-Time
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1995.

[Tsai et al 1996] Tsai, J., Y. Bi, S. Yang and R. Smith, Distributed Real-Time Systems:
Monitoring, Visualization and Analysis, Wiley & Sons, New York, 1996.

27

Appendix A. Specifications for Water Recovery System.

This appendix lists specifications that we encoded for the WRS. To aid in understanding
the specifications, Table 2 shows the mapping between ITCL symbols and the ASCII
encoding used by the interpreter.

Table 2. Symbol equivalence
ITCL Program ITCL Program ITCL Program

¬ ! ∈ : ↑ start
∧ && ⇒ -> ↓ end
∨ || ⇐ <- ∆ beginning … holds
→ => → ~> ∇ ending … holds
≡ = ← <~ β after … holds
= == ∪ union α before … holds
≠ != ∩ intersection ⊗ during … always
≤ <= & & ◊ during … some
≥ >= | | ⊥ none
∀ forall - -- |A| cardinal(A)
∃ exists

Some of the specifications were purposely modified to show how the program reports
counterexamples. While in the actual system, the counterexamples are displayed
separately, for clarity here the counterexamples are included directly following their
associated specifications.

When BlowerPower greater than 0 then FlowMeter07 > 0
flow07 = RLogChangedValue.FlowMeter07;
forall c1 : [RLogChangedValue.BlowerPower > 0] {
 during c1 always (flow07 >0)
};

When HeaterPower is greater than 0 then Thermocouple11
should increase
hp_pos = [RLogChangedValue.HeaterPower >0];
th11 = RLogChangedValue.Thermocouple11;
th11intervals = th11 -> th11;
increasing = [tmp:th11intervals st during tmp always hp_pos];
forall inc : increasing {
 th11(time(start(inc))) < th11(time(end(inc)))
};
#######
 is FALSE because:
When inc has the value: Intervalvar=
 Start: sec = 996622420 usec = 367780
 End: sec = 996622421 usec = 377797
 the condition (forall) becomes false

Operation LESS is FALSE because the operands are:
 First Operand:
Longvar= 25
Second Operand:
Longvar= 24

28

#######

When HeaterPower is 0 then Thermocouple11 should decrease
hp_zero = [RLogChangedValue.HeaterPower == 0];
decreasing = [tmp:th11intervals st during tmp always hp_zero];
forall inc : decreasing {
 th11[time(start(inc))] > th11[time(end(inc))]
};

If FlowMeter08 > 0 AND BlowerPower > 0 and HeaterPower > 0 then
Switch2State, Switch2State and Switch1State should
go from 1 to 0 in order over some period of time
conditions = [((RLogChangedValue.FlowMeter08 >0) &&
 (RLogChangedValue.BlowerPower >0) &&
 (RLogChangedValue.HeaterPower >0))];

When HeaterPower is greater than 0 then Thermocouple29 should
increase until 160
hp_pos = [RLogChangedValue.HeaterPower >0];
th29 = RLogChangedValue.Thermocouple29;
th29160 = [tmp:th29 st tmp > 160];
hp_pos_includeth160 = [tmp:hp_pos st exists t29:th29160 {tmp include t29}];
hp_pos_not_includeth160 = hp_pos -- hp_pos_includeth160;
hp_pos_till160 = start(hp_pos_includeth160) -> th29160;
hp_increasing = hp_pos_till160 union hp_pos_not_includeth160;
th29intervals = th29 -> th29;
increasing = [tmp:th29intervals st during tmp always hp_increasing];
forall inc : increasing {
 (th29(time(start(inc))) < th29(time(end(inc))))
};
#######
 is FALSE because:
When inc has the value: Intervalvar=
 Start: sec = 996622138 usec = 567800
 End: sec = 996622203 usec = 217788
 the condition (forall) becomes false

Operation LESS is FALSE because the operands are:
 First Operand:
Longvar= 24
Second Operand:
Longvar= 23
#######

When HeaterPower is greater than 0 then Thermocouple29 should
increase until 160 and then keep on that level
hp_pos_after160 = hp_pos -- hp_pos_till160;
forall interval : hp_pos_after160 {
 during interval always (th29>160)
};
#######
 is FALSE because:
When interval has the value: Intervalvar=
 Start: sec = 996622398 usec = 147794
 End: sec = 996622428 usec = 447794
 the condition (forall) becomes false

29

Operation ALWAYS is FALSE.
 BECAUSE:
 CONDITION doesn't hold in:
sec = 996622406 usec = 227777
#######

After turn on the blower power and the general power,
the FlowMeter07 must return readings greater than 1
main_and_bl_on = [(RLogChangedValue.Switch3State == 1) &&
 (RLogChangedValue.Switch1State == 1)];
forall it2_1: main_and_bl_on {
 during it2_1 always ((RLogChangedValue.FlowMeter07 > 1))
};
#######
 is FALSE because:
When it2_1 has the value: Intervalvar=
 Start: sec = 996622397 usec = 137780
 End: sec = 996622428 usec = 447794
 the condition (forall) becomes false

Operation ALWAYS is FALSE.
 BECAUSE:
 CONDITION doesn't hold at the beginning of interval:
sec = 996622397 usec = 137780
#######

First it is false because, initially, the switch*State has no value.
Then it is false because of the delay.

We can also consider some delay T1:
T1 = 2;
with_delay = start(main_and_bl_on)~>T1 ->end(main_and_bl_on);
This is in case T1 is greater than the interval where pw is on
with_delay = with_delay && main_and_bl_on;
forall it2_1: with_delay {
 during it2_1 always ((RLogChangedValue.FlowMeter07 > 1))
};

After turn on the blower power and the general power,
the FlowMeter07 must return readings greater than 1
and the FlowMeter08 between 7 and 8
main_and_bl_on = [(RLogChangedValue.Switch3State == 1) &&
 (RLogChangedValue.Switch1State == 1)];
forall it2_1: main_and_bl_on {
 during it2_1 always ((RLogChangedValue.FlowMeter07 > 1) &&
 (RLogChangedValue.FlowMeter08 > 7) &&
 (RLogChangedValue.FlowMeter08 < 8))
};
#######
 is FALSE because:
When it2_1 has the value: Intervalvar=
 Start: sec = 996622397 usec = 137780
 End: sec = 996622428 usec = 447794
 the condition (forall) becomes false

30

Operation ALWAYS is FALSE.
 BECAUSE:
 CONDITION doesn't hold at the beginning of interval:
sec = 996622397 usec = 137780
#######

We can also consider some delay T1:
T1 = 2;
with_delay = start(main_and_bl_on)~>T1 ->end(main_and_bl_on);
This is in case T1 is greater than the interval where pw is on
with_delay = with_delay && main_and_bl_on;
forall it2_1: with_delay {
 during it2_1 always ((RLogChangedValue.FlowMeter07 > 1) &&
 (RLogChangedValue.FlowMeter08 > 7) &&
 (RLogChangedValue.FlowMeter08 < 8))
};

Value of DewPoint1 has to be between 83 and 93
during -> always ((RLogChangedValue.DewPoint1 <= 93) &&
 (RLogChangedValue.DewPoint1 >= 83));

Temperature of TC10 cannot be greater than 60
during -> always (RLogChangedValue.Thermocouple10 <= 60);

Temperature of TC27 cannot be greater than 30
during -> always (RLogChangedValue.Thermocouple11 <= 30);

Temperature of TC29 cannot be greater than 180
during -> always (RLogChangedValue.Thermocouple29 <= 180);
#######
 is FALSE because:
Operation ALWAYS is FALSE.
 BECAUSE:
 CONDITION doesn't hold in:
sec = 996622420 usec = 367780
#######

The difference of temperature between the wick and the HX input
cannot be greater than 35
temp_wick = RLogChangedValue.Thermocouple10;
temp_hx = RLogChangedValue.Thermocouple11;
during -> always ((temp_wick - temp_hx) < 35);

