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ABSTRACT 

This paper describes a simulation of an integrated 
advanced life support system.  It contains models of the 
major components of an Advanced Life Support (ALS) 
system including crew, biomass, water recovery, air 
revitalization, food processing and power supply.  The 
simulation also models malfunctions and stochastic 
processes.  Sensors and actuators are modeled to allow 
controllers to interact with the simulation.  The simulation 
is designed for testing and evaluation of life support 
control approaches.  We use an example of a simple 
genetic algorithm to demonstrate how a control 
application might use the simulation.  The simulation is 
implemented in Java to make it portable and easy to 
use.         

INTRODUCTION 

Advanced life support systems have multiple interacting 
subsystems which makes control a particularly 
challenging task.  The simulation described in this paper 
provides a testbed for integrated control research.  
There have been other integrated life support 
simulations (e.g., [1]) and we have learned from those 
efforts.  This simulation is designed exclusively for 
integrated controls research, which imposes different 
requirements.  For example, the simulation is accessed 
through sensors and actuators, just as a real system 
would be.  Noise and uncertainty are built in and 
controllable.  Malfunctions and failures of subsystems 
are modeled and manifest themselves through 
anomalous readings in the sensors.  Crew members are 
taskable and their tasks have purpose and meaning in 
the simulation.  In essence, the simulation is a 
replacement for the Advanced Life Support (ALS) 
hardware and crew, allowing for testing of control 
approaches in advance of any integrated test. 

We want the simulation to be used to develop and 
evaluate integrated control techniques.  There are still 
many open research questions with respect to 

controlling advanced life support systems.  For example 
is a distributed or hierarchical approach better?  What 
role does machine learning play in control?  How can 
symbolic, qualitative control approaches be integrated 
with continuous, quantitative approaches?  How can we 
evaluate different control philosophies?  The research in 
this paper does not answer these questions.  Instead, it 
puts forth a mechanism by which we can begin to build 
systems which will provide us with answers.       

This paper starts with an overview of the models 
underlying the simulation.  These models are taken from 
the best available simulations or hardware tests.  We 
then discuss how external controllers can connect to the 
simulation. A simple external controller is implemented 
as a demonstration and some preliminary results are 
given.  Finally, future directions for the simulation are 
discussed.      

SIMULATION OVERVIEW 

A typical advanced life support system consists of 
multiple interacting modules [2].  We have modeled most 
of these modules using the best available information.  
The models are process models in that they take in 
certain resources and produce other resources.  They 
are not component models, that is, they do not model 
physical objects such as valves, pumps, etc.   

We have designed our simulation to be completely 
configurable for the user.  Any number of modules may 
be connected to any number of other modules.  To ease 
the use for researchers unfamiliar with life support 
systems, we have a default configuration of modules.  
This default configuration is shown in Figure 1 and is 
described below.        

CREW MODULE 

The crew module is implemented using models 
described in [3].  The number, gender, age and weight of 
the crew are settable as input parameters – in the 



default configuration there are four crew members, two 
male and two female.  The crew cycles through a set of 
activities (sleep, maintenance, recreation, etc.).  As they 
do so they consume O2, food and water and produce 
CO2, dirty water and solid waste.  The amount of 
resources consumed and produced varies according to 
crew member attributes and their activities.  The crew’s 
activities can be adjusted by passing a new crew 
schedule to the crew module.  A default schedule can 
also be used.  The crew module is connected to a crew 
environment that contains an atmosphere that they 
breathe.  The initial size and gas composition 
(percentages of O2, CO2, H2O and inert gases) are input 
parameters and the default size is 1.54893 x 106liters 
(from [4]) with an atmosphere equivalent to sea level air.  
As the simulation progresses the composition of gases 
in the atmosphere changes.   

BIOMASS MODULE 

The biomass module models crops that produce food 
and oxygen in the simulation.  Currently, only wheat 
crops are modeled, but we are adding eight additional 
crops in an upcoming release.  The growing area of the 

biomass module is fixed at the start of the simulation.  
Within this growing area the amounts of the different 
crops can be adjusted  during a simulation run either 
through the crew interface or directly through the 
BioMass interface.  As crops grow they consume CO2, 
potable or grey water and light.  At the same time, they 
produce O2 and transpire H2O.  The crops also produce 
biomass when they are harvested.  The production and 
consumption of resources are modeled according to [5], 
[6], and [7].  The biomass module has its own 
environment that contains an atmosphere for the plants.    
The default configuration has separate biomass and 
crew environments because the ideal gas composition 
for growing plants is different from the safe gas 
composition for people [5].  Because the simulation is 
reconfigurable it can be initialized with a single 
environment for crew and crops or with multiple 
environments for different crops.  Harvesting and 
planting of crops is currently done automatically with the 
default that the same type of crop is planted as was 
harvested.  However, a different crop schedule can be 
passed to the biomass module.  We are working on 
linking crew activities to planting and harvesting of 
crops. Crops are planted and harvested in shelves that 
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Figure 1: The various modules that comprise the integrated simulation 



contain 8.2 square meters of growing area and have 
their own lights.  The lighting and water available to the 
crops is adjustable.   

FOOD PROCESSING MODULE 

The food processing module takes in harvested biomass 
and energy and produces edible biomass and solid 
waste.  The edible biomass passes to the crew module 
to be used as food.  Food processing is currently 
automatic, but we are working on linking crew activities 
to food production.  This module is still under 
development and we hope to increase fidelity by 
incorporating results from [8].  

AIR REVITALIZATION MODULE 

The air revitalization module consists of several 
subsystems and is based on a recently completed test at 
the NASA Johnson Space Center [9].  The Variable 
Configuration CO2 Removal System (VCCR) takes air 
from the crew atmosphere and returns air that has less 
CO2.  The CO2 that is removed is stored in a CO2 store.  
The CO2 Reduction System (CRS) takes CO2 from the 
store and reacts it with H2 to make H2O and methane.  
The methane (CH4) is vented (but could be used for fuel) 
and the H2O is passed to the third system, the O2 
Generation System (OGS), which breaks down the H2O 
into H2 and O2.  The O2 is stored in an O2 store and the 
H2 goes back to the CRS (see Figure 2).  It is also 
possible to take H2O from the potable water store or to 
put H2O into the potable Water Recovery Module from 
the Air Revitalization Module.  In addition, an O2 
accumulator extracts O2 from the biomass atmosphere 
and places it in an O2 store.  Injectors are available to 
take gases from the stores and inject them into the 
atmospheres.  A control challenge is to maintain an 
optimal gas mixture in the crew and biomass 
environments while minimizing energy use by the 
accumulator and air revitalization module and while 
minimizing store sizes.  The capacities of the stores can 
be assigned at initialization.  All modules require power 
to function.  The OGS requires substantially more power 
than the other subsystems.   

       

WATER RECOVERY MODULE 

The water recovery module consumes dirty water and 
produces potable and grey water (i.e., water that can be 
used for washing but not drinking).  The water recovery 
module consists of four subsystems that process the 
water.  The biological water processing (BWP) 
subsystem removes organic compounds.  Then the 
water passes to a reverse osmosis (RO) subsystem, 
which recovers 85% of the water.  The 15% of the water 
not recovered from the RO (called brine) is passed to 
the air evaporation subsystem (AES), which recovers 
the rest.  These two streams of grey water (from the RO 
and the AES) are passed through a post-processing 
subsystem (PPS) to be purified and make potable water 
(see Figure 3).  An external controller can turn on or off 
various subsystems.  For example, all water can pass 
through the AES at a higher energy cost.  We based our 
water recovery module on a recently completed test at 
NASA Johnson Space Center [10]. 

POWER MODULE 

The power production module supplies electricity to all of 
the other modules.  There are two models for this 
module.  One simulates a nuclear-style power system 
that supplies a continuous, fixed amount of power.  A 
second simulates a solar-style power system that 
supplies a varying amount of power.  An external control 
program can set the amount of power going to each 
module up to the amount of power available. 
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Figure 3: The Water Recovery System 
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Figure 2: The Air Revitalization Module 



MALFUNCTIONS AND STOCHASTIC PROCESSES 

When evaluating a control system it is not enough to 
look at how it performs in nominal situations.  Life 
support systems will malfunction and it is important for 
the control system to identify and respond to these 
malfunctions and continue the mission safely.  We have 
implemented malfunctions in each module and provided 
an application programmer’s interface (API) to introduce 
those malfunctions at any time in the simulation.  Each 
module can have malfunctions of varying degrees of 
severity and temporal length.  For simplicity, the 
malfunctions have been divided into two categories 
based on temporal length: permanent and temporary; 
and three subcategories of severity: low, medium and 
high.  These malfunctions are interpreted differently by 
each module.  For example, a temporary but severe 
malfunction in the potable water store would be a large 
water leak.  A permanent but low severity malfunction in 
the power production module would be the loss of a 
small part of a solar array.   
 
Each module can experience multiple malfunctions at 
the same time and the control system must detect them, 
schedule the crew to repair them (if repairable), and 
monitor to make sure the repairs went accordingly.  
Scheduling the crew to do repairs can be done 
automatically (i.e., the crew schedule is changed by the 
simulation) through the malfunction API or by directly 
manipulating the crew schedule through the crew 
module API.  Permanent malfunctions are non- 
repairable and require the control system to reallocate 
resources to continue the mission.  A permanent 
malfunction with the water recovery system, for 
example, might cause a decrease in potable water.  The 
control system could react by lowering available water to 
the plants to provide enough water to the crew. 
 
The simulation also models stochastic processes.  
Because the real world is not deterministic, neither is the 
simulation.  For example, the exact amount of air that is 
breathed in by a crew member is different with every 
breath.  We model this by using a Gaussian function 
with adjustable parameters.  The Gaussian can be set to 
zero to produce a deterministic simulation.  These 
stochastic processes should not be confused with noise 
added to sensors (see next section).  Sensor noise is 
meant to model the uncertainty in sensing a real system, 
while the simulation stochastic processes are meant to 
capture the random fluctuations of inherent in biological 
and physical-chemical systems.  
 
IMPLEMENTATION DETAILS 

The simulation is written entirely in Java for its portability 
and ease of use.  We have tested the simulation using 
Unix, Windows and Macintosh operating systems.  
Using IBM’s latest virtual machine for Java we achieve 
approximately 200 simulation hours per second on a 
single desktop PC.  The modules interact with each 
other using the Common Object Request Broker 

Architecture (CORBA).  CORBA also allows the 
simulation to run completely distributed and in parallel, 
so each module can be run on separate and remote 
machines to increase the speed of the simulation.  
Furthermore, CORBA also lets any language 
implementing an Object Request Broker (ORB) to 
communicate with the simulation.  Most modern 
programming languages implement an ORB, including 
Java, C++, C, and Lisp (see http://www.corba.org).  
Thus, a controls researcher can write an ALS controller 
in the language and platform of their choice and connect 
to the simulation over the network via CORBA.  The 
simulation also provides a logging facility that outputs 
simulation data to an eXtensible Markup Langauge 
(XML) format or to a database. 

Each module of the simulation derives from the same 
base class.  Thus, a programmer fluent in object-
oriented programming can easily write their own 
modules to replace those that we offer.  For example, if 
someone wants to model a different kind of water 
recovery system they can do so and then integrate it 
with the rest of the simulation.   

CONTROLLING THE SIMULATION 

An integrated advanced life support system poses many 
challenges to control approaches.  Our goal with this 
simulation is to provide a testbed for control research.  
Controllers interface to their systems via sensors and 
actuators.  Thus, we have implemented sensors and 
actuators in our system.  Figure 4 shows our complete 
system with the models, sensors and actuators and 
controller.  For examples of advanced life support 
controllers see [9,10,11,12,13].  

 

SENSORS 

Sensors report on values of the underlying simulation.  
For example, an O2 sensor would report the amount of 
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Figure 4. An external controller interacting with the 
simulation through sensors and actuators 



O2 in the atmosphere.  Sensors are a distinct set of 
objects and each module has sensors associated with it.  
The controller can poll a sensor via CORBA using an 
API.  Thus, the controller can be running on a separate 
machine and be implemented in any programming 
language that supports CORBA.  Sensors can also be 
event-driven, that is, they can trigger on certain events 
such as the O2 dropping below a fixed parameter.  We 
provide a default sensor suite for the simulation, but new 
sensors may be added to the simulation in any language 
that supports CORBA 

Sensors in the real-world are noisy – that is they do not 
always return ground truth.  We model sensors with a 
adjustable Gaussian noise function.  Sensor noise can 
be turned off so that the sensors report ground truth; an 
effective control system, however, should be capable of 
dealing with sensor noise.        

 

 

ACTUATORS 

Actuators are mirror images of sensors – they allow for 
control actions to be taken on the simulation.  Like 
sensors they are unique objects and are specific to 
modules.  The controller can call an action via CORBA 
using the API.  Thus, the controller can run on a 
separate machine and be implemented in any 
programming language that supports CORBA.  We 
provide a default set of actuators for the simulation.  Like 
sensors, new actuators can be created in any language 
that supports CORBA. 

Our simulation offers numerous control opportunities.  In 
Figure 1 every arrow is controllable except for the 
exchange of gases between the crew and their 
atmosphere and crops and their atmosphere.  This 
means control over flow rates and control over the 
amount of power going to each module.  Within modules 

 

 

Figure 5 The simulation’s graphical user interface 



subsystems can be turned on and off.  The crew and 
crop schedules can be modified.  

Like sensors, actuators in the real-world are noisy.  For 
example, an injector that is told to open for one second 
will open for slightly more or less than one second given 
its mechanical tolerances.  We model this noise as a 
Gaussian function.  The parameters of the noise function 
are adjustable and the function can be turned off.      

INITIAL CONDITIONS 

In addition to controlling the simulation via sensors and 
actuators, the initial conditions of the simulation can be 
controlled before running.  This is done via CORBA and 
an API. The number of crew, their ages, gender, age, 
etc. are all settable as well as initial crop plantings.  The 
capacities of all of the stores and their initial levels are 
also settable.  The control example given in the next 
section demonstrates how an external controller might 
manipulate the initial conditions.  

SIMULATION RUNS 

Our simulation is a discrete event simulation with a fixed 
time step of an hour; we have abstracted the time step 
to a simulation ‘tick’.  Each module has a tick method 
that advances that module’s state from t to t+1, i.e., 
advances its state one hour.  We have provided a 
BioDriver class for the convenience of the user which 
supplies basic control methods over the simulation.  

BioDriver has a method to advance the entire simulation 
one tick, i.e., all modules are “ticked” sequentially.  While 
each module is run sequentially, data is cached so that 
all modules use data generated from the previous tick, 
which effectively makes each module run in parallel.  
  
We expect the simulation to be controlled in two ways.  
First is a dynamic mode in which a controller ticks the 
simulation once to advance it one hour, then looks at the 
sensors,  makes any control decisions through the 
actuators, advances the simulation another hour and 
repeats the process.  This approach is meant to 
approximate a real-time controller of an advanced life 
support system. 
 
Second is a batch mode whereby the simulation is setup 
by the controller and then told to run for a fixed number 
of ticks (hours) or until the consumable resources 
become dangerously low for the crew.  The control 
system can then look at the final states, make a decision 
about what initial conditions should change and run the 
simulation again.  We present a simple example of this 
approach in the next section. 

GRAPHICAL USER INTERFACE 

We have implemented a Java graphical user interface 
(GUI) that displays data from the simulation and allows 
limited commanding of the simulation (see Figure 5).  
Each module has three views of its inner processes and 
resource levels: a text view, a chart view, and a 

 

Figure 6 Results of a genetic algorithm optimizing initial conditions of the simulation 



schematic view.  The text view simply has name/value 
pairs that directly describe the state of the module.  A 
graph view displays relevant aspects of the module 
using graphs and charts.  The schematic view provides 
a layout of the module’s subsystems and their 
interactions.  The GUI exists to give the user a quick 
view of simulation parameters and a small amount of 
control. 
 
A CONTROL EXAMPLE 

This section gives an example of how the simulation 
might be used for control research.  It is not a real-time 
control example, but rather a program that chooses 
initial conditions for the simulation.  The program is a 
genetic algorithm [14].  A genetic algorithm encodes the 
control inputs as a “gene” (usually a binary string).  
There is a fitness function that evaluates the gene.  The 
process starts with a random population of genes with 
each gene evaluated.  The best genes are saved while 
the worst genes are eliminated.  The best genes are 
then mutated or crossed (i.e., parts of two genes are 
swapped with each other) creating a new population.  
The genes in this new population are then evaluated 
with the fitness function and the process continues until 
the population is no longer improving with respect to the 
fitness function.     

We implemented a genetic algorithm in which the gene 
was a description of the initial configuration of the 
simulation (e.g., crew size, store capacities, etc.).  The 
genetic algorithm program takes this initial configuration 
and sets up the simulation accordingly.  Our simulation 
is run until consumable resources become too low and 
the mission is ended.  The length of the mission (in 
hours) is then the fitness of the gene.  That is, the 
simulation itself is the fitness function.  Good genes (i.e., 
those configurations that resulted in the longest running 
time for the simulation) are crossed, mutated or inverted.  
Bad genes are replaced by genes that had a higher 
fitness creating a new population.  The process is 
repeated until no more progress is being made.  
Simulations can run in parallel to provide faster answers, 
that is, the whole population can be evaluated in parallel.    
Figure 6 shows the results of running the simulation.  
The X axis are trials using the simulation (about 600), 
the Y axis are the run lengths of the simulation during 
each trial.  The top red line represents the best gene 
(i.e., the longest run), which increases and then plateaus 
as the number of trials increases.  The jagged blue line 
is the run length of each and every trial – it varies 
significantly as new configurations are tested.  The 
middle green line is a running average of the lengths of 
all of the simulation runs.  As bad configurations are 
replaced by better ones the overall simulation length 
increases steadily, finally plateauing around the 
theoretical limit.  The blue lines continue to be jagged 
because new genes that are created via mutation, cross-
over or inversion will often be much worse than the 
genes that spawned them.      

EVALUATING CONTROLLERS 

It is important to be able to evaluate different controllers 
to determine the most effective approaches. Evaluation 
metrics for ALS controllers are an open research 
question.  We are proposing a measure of mission 
productivity, which could be used to compare different 
control strategies.  Mission productivity is computed 
based on how long and how well the crew members 
work on mission-relevant activities.    Shortages of O2, 
water, food, sleep, exercise, etc. will reduce the total 
mission productivity.  Thus, the most effective controller 
is the one that produces the most efficient crew 
schedule while keeping life support parameters within 
optimal bounds.  Early work on measuring crew 
performance is given in [15].   
 
Another metric is to measure the peak capacity of stores 
with the goal of minimizing store sizes (and thus weight).  
An effective control system would require a minimum of 
buffers yet still be able to cope with malfunctions and 
perturbations in the systems.   
 

FUTURE WORK 

We continue to improve the accuracy of our simulation.  
We are adding eight additional crops (rice, soybeans, 
sweet potatoes, peanuts, lettuce, beans, tomatoes and 
white potatoes).  This will allow planning and scheduling 
researchers to investigate crop and menu planning.  We 
are updating our crop models to use the latest energy 
cascade crop model [16].  We also do not yet model 
solid waste processing.  We hope to add a simple 
incinerator as was used in the Phase III human test [9] 
or other solid waste processors as described in [17].  
Also, our current stochastic models are simple 
Gaussians.  We plan to derive specific probabilistic 
models for each module from test data. 
 
We are working with Vanderbilt University to implement 
detailed Simulink models of the Water Recovery System 
described earlier in this paper.  These models are 
continuous and component-based – that is valves, 
pumps, tanks, etc are modeled.  The Vanderbilt 
implementation is being verified against data from the 
recent Advanced Water Recovery System (AWRS) test 
at NASA JSC [10].  Once these models are done we will 
use CORBA to interface them with the rest of our 
simulation.  Thus, if controls researchers want a 
detailed, component-level module to test their ideas they 
can use this option.  This will allow both breadth across 
an integrated ALS system and depth into one of the 
components.     
  
The simulation infrastructure also needs additional work.  
A one hour time step was chosen for simplicity of 
implementation.  However, different modules and 
different control strategies may need different time 
steps.  We are working on adjustable time steps to give 
the simulation both fine and coarse grained modes. 



 
CONCLUSION 

This paper describes an integrated life support 
simulation.  The goal of the simulation is to stimulate and 
support research into integrated control of advanced life 
support systems.  The simulation includes models of 
basic life support components and also models of 
malfunctions and stochastic processes.  Sensors and 
actuators are used to control the simulation.  We hope 
that this simulation will be used in several different ways.  
First, to compare and contrast different control 
approaches against a common standard.  A researcher 
with an idea about how to control a life support system 
could test that idea and compare it against others with 
minimal investment.  Second, we hope that students will 
become interested in this domain and use the simulation 
in the course of their studies.  Finally, we hope that as 
real-world life support systems are built that the 
simulation can be used to perform “what-if” analysis 
during operation and provide for a safer and more 
efficient controller.    

REFERENCES 

1. Finn, Cory K. “Dynamic System Modeling of 
Regenerative Life Support Systems,” 29th 
International Conference on Environmental 
Systems, SAE paper 1999-01-2040.  

2. JSC Advanced Life Support Requirements 
Document available at 
http://advlifesupport.jsc.nasa.gov 

3. Goudarzi, Sara and K.C. Ting, “Top Level Modeling 
of Crew Component of ALSS,” Proceedings 
International Conference on Environmental 
Systems, 1999. 

4. Tri, T. O., “Bioregenerative Planetary Life Support 
Systems Test Complex (BIO-Plex):  Test Mission 
Objectives and Facility Development,” SAE Paper 
1999-01-2186, 29th International Conference on 
Environmental Systems, 1999. 

5. Edeen, M. et al, “Modeling and Validation of the 
Ambient and Variable Pressure Growth Chamber 
Models,” SAE Technical Paper Series 932171, 
1993. 

6. Barta, Daniel J., Castillo, Juan M., and Fortson, 
Russ E., “The Biomass Production System for 
Bioregenerative Planetary Life Support Systems 
Test Complex: Preliminary Designs and 
Considerations,” 29th International Conference on 
Environmental Systems, SAE paper 1999-01-2188, 
1999. 

7. JSC Advanced Life Support Baseline Values and 
Assumptions Document available at 
http://advlifesupport.jsc.nasa.gov 

8. Hsiang, Hsien-hsing, Luis Rodriguez and K.C. Ting, 
“Top-Level Modeling of Food Processing and 
Nutrition(FP&N) Component of Advanced Life 
Support System (ALSS),” 30th International 

Conference on Environmental Systems, SAE paper 
2000-01-2262, 2000. 

9. Schreckenghost, Debra, Daniel Ryan, Carroll 
Thronesbery and R. Peter Bonasso, “Intelligent 
Control of Life Support Systems for Space Habitats,” 
Proceedings of the Conference on Innovative 
Applications of Artificial Intelligence, 1998. 

10. Bonasso, R. P., David Kortenkamp and Carroll 
Thronesbery, Intelligent Control of a Water 
Recovery System. In AI Magazine, Vol. 24, No. 1, 
Spring 2003. 

11. Kortenkamp, David, R. Peter Bonasso and Devika 
Subramanian, “Distributed, Autonomous Control of 
Space Habitats,” in Proceedings IEEE Aerospace 
Conference, 2001.  

12. Schreckenghost, Debra, Carroll Thronesbery, R. 
Peter Bonasso, David Kortenkamp and Cheryl 
Martin, “Intelligent Control of Life Support for Space 
Missions,” in IEEE Intelligent Systems Magazine, 
Vol. 17, No. 5, September/October 2002. 

13. Crawford, Sekou, Christopher Pawlowski, and Cory 
Finn, “Power Management in Regenerative Life 
Support Systems using Market-based Control,” 30th 
International Conference on Environmental 
Systems, 2000.  

14. Holland, John, Adaptation in Natural and Artificial 
Systems, University of Michigan Press, Ann Arbor 
Michigan, 1975. 

15. Goudarzi, Sara, Jim Cavazzoni and A.J. Both, 
“Dynamic Modeling of Crew Performance for Long 
Duration Space Missions,” 32nd International 
Conference on Environmental Systems, SAE paper 
02ICES-196, 2002. 

16. Jones, Harry and James Cavazzoni, “Top-Level 
Crop Models for Advanced Life Support Analysis,” 
30th International Conference on Environmental 
Systems, SAE paper 2000-01-2261, 2000. 

17. Rodriguez, Luis, Sukwon Kang, John A. Hogan and 
K.C. Ting, “Top-Level Modeling of Waste Processing 
and Resource Recovery Component of an ALSS,” 
29th International Conference on Environmental 
Systems, SAE paper 1999-01-2044, 1999. 

 
CONTACT 

BioSim is available at http://www.traclabs.com/biosim.  
Questions and comments can be directed to David 
Kortenkamp at kortenkamp@jsc.nasa.gov or to Scott 
Bell at scott@traclabs.com.  

ACRONYMS 

AES: Air Evaporation System 
 
ALS: Advanced Life Support 
 
API: Application Programmers Interface 
 
AWRS: Advanced Water Recovery System 
 



BWP: Biological Water Processor 
 
CORBA: Common Object Request Broker Architecture 
 
CRS: Carbon Dioxide Reduction System 
 
GA: Genetic Algorithm 
 
GUI: Graphical User Interface 
 
OGS: Oxygen Generation System 
 

ORB: Object Request Broker 
 
PPS: Post Processing System 
 
RO: Reverse Osmosis 
 
VCCR: Variable Configuration CO2 Removal 
 
XML: eXtensible Markup Language 
 
 

 


