
2003-01-2546

Simulating Advanced Life Support Systems for Integrated
Controls Research

David Kortenkamp
Metrica Inc. at NASA Johnson Space Center ER2

Scott Bell
S&K Technologies Inc. at NASA Johnson Space Center ER2

Copyright © 2003 SAE International

ABSTRACT

This paper describes a simulation of an integrated
advanced life support system. It contains models of the
major components of an Advanced Life Support (ALS)
system including crew, biomass, water recovery, air
revitalization, food processing and power supply. The
simulation also models malfunctions and stochastic
processes. Sensors and actuators are modeled to allow
controllers to interact with the simulation. The simulation
is designed for testing and evaluation of life support
control approaches. We use an example of a simple
genetic algorithm to demonstrate how a control
application might use the simulation. The simulation is
implemented in Java to make it portable and easy to
use.

INTRODUCTION

Advanced life support systems have multiple interacting
subsystems which makes control a particularly
challenging task. The simulation described in this paper
provides a testbed for integrated control research.
There have been other integrated life support
simulations (e.g., [1]) and we have learned from those
efforts. This simulation is designed exclusively for
integrated controls research, which imposes different
requirements. For example, the simulation is accessed
through sensors and actuators, just as a real system
would be. Noise and uncertainty are built in and
controllable. Malfunctions and failures of subsystems
are modeled and manifest themselves through
anomalous readings in the sensors. Crew members are
taskable and their tasks have purpose and meaning in
the simulation. In essence, the simulation is a
replacement for the Advanced Life Support (ALS)
hardware and crew, allowing for testing of control
approaches in advance of any integrated test.

We want the simulation to be used to develop and
evaluate integrated control techniques. There are still
many open research questions with respect to

controlling advanced life support systems. For example
is a distributed or hierarchical approach better? What
role does machine learning play in control? How can
symbolic, qualitative control approaches be integrated
with continuous, quantitative approaches? How can we
evaluate different control philosophies? The research in
this paper does not answer these questions. Instead, it
puts forth a mechanism by which we can begin to build
systems which will provide us with answers.

This paper starts with an overview of the models
underlying the simulation. These models are taken from
the best available simulations or hardware tests. We
then discuss how external controllers can connect to the
simulation. A simple external controller is implemented
as a demonstration and some preliminary results are
given. Finally, future directions for the simulation are
discussed.

SIMULATION OVERVIEW

A typical advanced life support system consists of
multiple interacting modules [2]. We have modeled most
of these modules using the best available information.
The models are process models in that they take in
certain resources and produce other resources. They
are not component models, that is, they do not model
physical objects such as valves, pumps, etc.

We have designed our simulation to be completely
configurable for the user. Any number of modules may
be connected to any number of other modules. To ease
the use for researchers unfamiliar with life support
systems, we have a default configuration of modules.
This default configuration is shown in Figure 1 and is
described below.

CREW MODULE

The crew module is implemented using models
described in [3]. The number, gender, age and weight of
the crew are settable as input parameters – in the

default configuration there are four crew members, two
male and two female. The crew cycles through a set of
activities (sleep, maintenance, recreation, etc.). As they
do so they consume O2, food and water and produce
CO2, dirty water and solid waste. The amount of
resources consumed and produced varies according to
crew member attributes and their activities. The crew’s
activities can be adjusted by passing a new crew
schedule to the crew module. A default schedule can
also be used. The crew module is connected to a crew
environment that contains an atmosphere that they
breathe. The initial size and gas composition
(percentages of O2, CO2, H2O and inert gases) are input
parameters and the default size is 1.54893 x 106liters
(from [4]) with an atmosphere equivalent to sea level air.
As the simulation progresses the composition of gases
in the atmosphere changes.

BIOMASS MODULE

The biomass module models crops that produce food
and oxygen in the simulation. Currently, only wheat
crops are modeled, but we are adding eight additional
crops in an upcoming release. The growing area of the

biomass module is fixed at the start of the simulation.
Within this growing area the amounts of the different
crops can be adjusted during a simulation run either
through the crew interface or directly through the
BioMass interface. As crops grow they consume CO2,
potable or grey water and light. At the same time, they
produce O2 and transpire H2O. The crops also produce
biomass when they are harvested. The production and
consumption of resources are modeled according to [5],
[6], and [7]. The biomass module has its own
environment that contains an atmosphere for the plants.
The default configuration has separate biomass and
crew environments because the ideal gas composition
for growing plants is different from the safe gas
composition for people [5]. Because the simulation is
reconfigurable it can be initialized with a single
environment for crew and crops or with multiple
environments for different crops. Harvesting and
planting of crops is currently done automatically with the
default that the same type of crop is planted as was
harvested. However, a different crop schedule can be
passed to the biomass module. We are working on
linking crew activities to planting and harvesting of
crops. Crops are planted and harvested in shelves that

crew
environment

crew
environment

air-outair-in

biomass
environment

biomass
environment

air-outair-in

air-in

air-out

methane ventmethane vent

CO2 O2

CO2

O2

injector

accum.
injector

biomass
store

food
store

food
processor

to all

waste
store

dirty
H2O

potable
H2O

grey
H2O

CO2

O2

O2

dirty
H2O

grey
H2O

potable
H2O

H2OH2O

biomassfood

solid
wastesolid

waste

crewcrew

air RS power

water RSwater RS
waste RSwaste RS

biomassbiomassactivities

action effects
crop schedule

Figure 1: The various modules that comprise the integrated simulation

contain 8.2 square meters of growing area and have
their own lights. The lighting and water available to the
crops is adjustable.

FOOD PROCESSING MODULE

The food processing module takes in harvested biomass
and energy and produces edible biomass and solid
waste. The edible biomass passes to the crew module
to be used as food. Food processing is currently
automatic, but we are working on linking crew activities
to food production. This module is still under
development and we hope to increase fidelity by
incorporating results from [8].

AIR REVITALIZATION MODULE

The air revitalization module consists of several
subsystems and is based on a recently completed test at
the NASA Johnson Space Center [9]. The Variable
Configuration CO2 Removal System (VCCR) takes air
from the crew atmosphere and returns air that has less
CO2. The CO2 that is removed is stored in a CO2 store.
The CO2 Reduction System (CRS) takes CO2 from the
store and reacts it with H2 to make H2O and methane.
The methane (CH4) is vented (but could be used for fuel)
and the H2O is passed to the third system, the O2
Generation System (OGS), which breaks down the H2O
into H2 and O2. The O2 is stored in an O2 store and the
H2 goes back to the CRS (see Figure 2). It is also
possible to take H2O from the potable water store or to
put H2O into the potable Water Recovery Module from
the Air Revitalization Module. In addition, an O2
accumulator extracts O2 from the biomass atmosphere
and places it in an O2 store. Injectors are available to
take gases from the stores and inject them into the
atmospheres. A control challenge is to maintain an
optimal gas mixture in the crew and biomass
environments while minimizing energy use by the
accumulator and air revitalization module and while
minimizing store sizes. The capacities of the stores can
be assigned at initialization. All modules require power
to function. The OGS requires substantially more power
than the other subsystems.

WATER RECOVERY MODULE

The water recovery module consumes dirty water and
produces potable and grey water (i.e., water that can be
used for washing but not drinking). The water recovery
module consists of four subsystems that process the
water. The biological water processing (BWP)
subsystem removes organic compounds. Then the
water passes to a reverse osmosis (RO) subsystem,
which recovers 85% of the water. The 15% of the water
not recovered from the RO (called brine) is passed to
the air evaporation subsystem (AES), which recovers
the rest. These two streams of grey water (from the RO
and the AES) are passed through a post-processing
subsystem (PPS) to be purified and make potable water
(see Figure 3). An external controller can turn on or off
various subsystems. For example, all water can pass
through the AES at a higher energy cost. We based our
water recovery module on a recently completed test at
NASA Johnson Space Center [10].

POWER MODULE

The power production module supplies electricity to all of
the other modules. There are two models for this
module. One simulates a nuclear-style power system
that supplies a continuous, fixed amount of power. A
second simulates a solar-style power system that
supplies a varying amount of power. An external control
program can set the amount of power going to each
module up to the amount of power available.

BWPBWP

RORO

PPSPPS

AESAES

dirty water

brine

grey water

grey water

potable water

dirty water - organics

Figure 3: The Water Recovery System

VCCR

CO2

CRS

OGS

O2

air

air – CO2
CO2 CO2

methane (CH4)

H2O

possible H2O to/from
water recovery system

O2

H2

H2

Figure 2: The Air Revitalization Module

MALFUNCTIONS AND STOCHASTIC PROCESSES

When evaluating a control system it is not enough to
look at how it performs in nominal situations. Life
support systems will malfunction and it is important for
the control system to identify and respond to these
malfunctions and continue the mission safely. We have
implemented malfunctions in each module and provided
an application programmer’s interface (API) to introduce
those malfunctions at any time in the simulation. Each
module can have malfunctions of varying degrees of
severity and temporal length. For simplicity, the
malfunctions have been divided into two categories
based on temporal length: permanent and temporary;
and three subcategories of severity: low, medium and
high. These malfunctions are interpreted differently by
each module. For example, a temporary but severe
malfunction in the potable water store would be a large
water leak. A permanent but low severity malfunction in
the power production module would be the loss of a
small part of a solar array.

Each module can experience multiple malfunctions at
the same time and the control system must detect them,
schedule the crew to repair them (if repairable), and
monitor to make sure the repairs went accordingly.
Scheduling the crew to do repairs can be done
automatically (i.e., the crew schedule is changed by the
simulation) through the malfunction API or by directly
manipulating the crew schedule through the crew
module API. Permanent malfunctions are non-
repairable and require the control system to reallocate
resources to continue the mission. A permanent
malfunction with the water recovery system, for
example, might cause a decrease in potable water. The
control system could react by lowering available water to
the plants to provide enough water to the crew.

The simulation also models stochastic processes.
Because the real world is not deterministic, neither is the
simulation. For example, the exact amount of air that is
breathed in by a crew member is different with every
breath. We model this by using a Gaussian function
with adjustable parameters. The Gaussian can be set to
zero to produce a deterministic simulation. These
stochastic processes should not be confused with noise
added to sensors (see next section). Sensor noise is
meant to model the uncertainty in sensing a real system,
while the simulation stochastic processes are meant to
capture the random fluctuations of inherent in biological
and physical-chemical systems.

IMPLEMENTATION DETAILS

The simulation is written entirely in Java for its portability
and ease of use. We have tested the simulation using
Unix, Windows and Macintosh operating systems.
Using IBM’s latest virtual machine for Java we achieve
approximately 200 simulation hours per second on a
single desktop PC. The modules interact with each
other using the Common Object Request Broker

Architecture (CORBA). CORBA also allows the
simulation to run completely distributed and in parallel,
so each module can be run on separate and remote
machines to increase the speed of the simulation.
Furthermore, CORBA also lets any language
implementing an Object Request Broker (ORB) to
communicate with the simulation. Most modern
programming languages implement an ORB, including
Java, C++, C, and Lisp (see http://www.corba.org).
Thus, a controls researcher can write an ALS controller
in the language and platform of their choice and connect
to the simulation over the network via CORBA. The
simulation also provides a logging facility that outputs
simulation data to an eXtensible Markup Langauge
(XML) format or to a database.

Each module of the simulation derives from the same
base class. Thus, a programmer fluent in object-
oriented programming can easily write their own
modules to replace those that we offer. For example, if
someone wants to model a different kind of water
recovery system they can do so and then integrate it
with the rest of the simulation.

CONTROLLING THE SIMULATION

An integrated advanced life support system poses many
challenges to control approaches. Our goal with this
simulation is to provide a testbed for control research.
Controllers interface to their systems via sensors and
actuators. Thus, we have implemented sensors and
actuators in our system. Figure 4 shows our complete
system with the models, sensors and actuators and
controller. For examples of advanced life support
controllers see [9,10,11,12,13].

SENSORS

Sensors report on values of the underlying simulation.
For example, an O2 sensor would report the amount of

Simulation
Models

sensorssensors actuatorsactuators

controller

Figure 4. An external controller interacting with the
simulation through sensors and actuators

O2 in the atmosphere. Sensors are a distinct set of
objects and each module has sensors associated with it.
The controller can poll a sensor via CORBA using an
API. Thus, the controller can be running on a separate
machine and be implemented in any programming
language that supports CORBA. Sensors can also be
event-driven, that is, they can trigger on certain events
such as the O2 dropping below a fixed parameter. We
provide a default sensor suite for the simulation, but new
sensors may be added to the simulation in any language
that supports CORBA

Sensors in the real-world are noisy – that is they do not
always return ground truth. We model sensors with a
adjustable Gaussian noise function. Sensor noise can
be turned off so that the sensors report ground truth; an
effective control system, however, should be capable of
dealing with sensor noise.

ACTUATORS

Actuators are mirror images of sensors – they allow for
control actions to be taken on the simulation. Like
sensors they are unique objects and are specific to
modules. The controller can call an action via CORBA
using the API. Thus, the controller can run on a
separate machine and be implemented in any
programming language that supports CORBA. We
provide a default set of actuators for the simulation. Like
sensors, new actuators can be created in any language
that supports CORBA.

Our simulation offers numerous control opportunities. In
Figure 1 every arrow is controllable except for the
exchange of gases between the crew and their
atmosphere and crops and their atmosphere. This
means control over flow rates and control over the
amount of power going to each module. Within modules

Figure 5 The simulation’s graphical user interface

subsystems can be turned on and off. The crew and
crop schedules can be modified.

Like sensors, actuators in the real-world are noisy. For
example, an injector that is told to open for one second
will open for slightly more or less than one second given
its mechanical tolerances. We model this noise as a
Gaussian function. The parameters of the noise function
are adjustable and the function can be turned off.

INITIAL CONDITIONS

In addition to controlling the simulation via sensors and
actuators, the initial conditions of the simulation can be
controlled before running. This is done via CORBA and
an API. The number of crew, their ages, gender, age,
etc. are all settable as well as initial crop plantings. The
capacities of all of the stores and their initial levels are
also settable. The control example given in the next
section demonstrates how an external controller might
manipulate the initial conditions.

SIMULATION RUNS

Our simulation is a discrete event simulation with a fixed
time step of an hour; we have abstracted the time step
to a simulation ‘tick’. Each module has a tick method
that advances that module’s state from t to t+1, i.e.,
advances its state one hour. We have provided a
BioDriver class for the convenience of the user which
supplies basic control methods over the simulation.

BioDriver has a method to advance the entire simulation
one tick, i.e., all modules are “ticked” sequentially. While
each module is run sequentially, data is cached so that
all modules use data generated from the previous tick,
which effectively makes each module run in parallel.

We expect the simulation to be controlled in two ways.
First is a dynamic mode in which a controller ticks the
simulation once to advance it one hour, then looks at the
sensors, makes any control decisions through the
actuators, advances the simulation another hour and
repeats the process. This approach is meant to
approximate a real-time controller of an advanced life
support system.

Second is a batch mode whereby the simulation is setup
by the controller and then told to run for a fixed number
of ticks (hours) or until the consumable resources
become dangerously low for the crew. The control
system can then look at the final states, make a decision
about what initial conditions should change and run the
simulation again. We present a simple example of this
approach in the next section.

GRAPHICAL USER INTERFACE

We have implemented a Java graphical user interface
(GUI) that displays data from the simulation and allows
limited commanding of the simulation (see Figure 5).
Each module has three views of its inner processes and
resource levels: a text view, a chart view, and a

Figure 6 Results of a genetic algorithm optimizing initial conditions of the simulation

schematic view. The text view simply has name/value
pairs that directly describe the state of the module. A
graph view displays relevant aspects of the module
using graphs and charts. The schematic view provides
a layout of the module’s subsystems and their
interactions. The GUI exists to give the user a quick
view of simulation parameters and a small amount of
control.

A CONTROL EXAMPLE

This section gives an example of how the simulation
might be used for control research. It is not a real-time
control example, but rather a program that chooses
initial conditions for the simulation. The program is a
genetic algorithm [14]. A genetic algorithm encodes the
control inputs as a “gene” (usually a binary string).
There is a fitness function that evaluates the gene. The
process starts with a random population of genes with
each gene evaluated. The best genes are saved while
the worst genes are eliminated. The best genes are
then mutated or crossed (i.e., parts of two genes are
swapped with each other) creating a new population.
The genes in this new population are then evaluated
with the fitness function and the process continues until
the population is no longer improving with respect to the
fitness function.

We implemented a genetic algorithm in which the gene
was a description of the initial configuration of the
simulation (e.g., crew size, store capacities, etc.). The
genetic algorithm program takes this initial configuration
and sets up the simulation accordingly. Our simulation
is run until consumable resources become too low and
the mission is ended. The length of the mission (in
hours) is then the fitness of the gene. That is, the
simulation itself is the fitness function. Good genes (i.e.,
those configurations that resulted in the longest running
time for the simulation) are crossed, mutated or inverted.
Bad genes are replaced by genes that had a higher
fitness creating a new population. The process is
repeated until no more progress is being made.
Simulations can run in parallel to provide faster answers,
that is, the whole population can be evaluated in parallel.
Figure 6 shows the results of running the simulation.
The X axis are trials using the simulation (about 600),
the Y axis are the run lengths of the simulation during
each trial. The top red line represents the best gene
(i.e., the longest run), which increases and then plateaus
as the number of trials increases. The jagged blue line
is the run length of each and every trial – it varies
significantly as new configurations are tested. The
middle green line is a running average of the lengths of
all of the simulation runs. As bad configurations are
replaced by better ones the overall simulation length
increases steadily, finally plateauing around the
theoretical limit. The blue lines continue to be jagged
because new genes that are created via mutation, cross-
over or inversion will often be much worse than the
genes that spawned them.

EVALUATING CONTROLLERS

It is important to be able to evaluate different controllers
to determine the most effective approaches. Evaluation
metrics for ALS controllers are an open research
question. We are proposing a measure of mission
productivity, which could be used to compare different
control strategies. Mission productivity is computed
based on how long and how well the crew members
work on mission-relevant activities. Shortages of O2,
water, food, sleep, exercise, etc. will reduce the total
mission productivity. Thus, the most effective controller
is the one that produces the most efficient crew
schedule while keeping life support parameters within
optimal bounds. Early work on measuring crew
performance is given in [15].

Another metric is to measure the peak capacity of stores
with the goal of minimizing store sizes (and thus weight).
An effective control system would require a minimum of
buffers yet still be able to cope with malfunctions and
perturbations in the systems.

FUTURE WORK

We continue to improve the accuracy of our simulation.
We are adding eight additional crops (rice, soybeans,
sweet potatoes, peanuts, lettuce, beans, tomatoes and
white potatoes). This will allow planning and scheduling
researchers to investigate crop and menu planning. We
are updating our crop models to use the latest energy
cascade crop model [16]. We also do not yet model
solid waste processing. We hope to add a simple
incinerator as was used in the Phase III human test [9]
or other solid waste processors as described in [17].
Also, our current stochastic models are simple
Gaussians. We plan to derive specific probabilistic
models for each module from test data.

We are working with Vanderbilt University to implement
detailed Simulink models of the Water Recovery System
described earlier in this paper. These models are
continuous and component-based – that is valves,
pumps, tanks, etc are modeled. The Vanderbilt
implementation is being verified against data from the
recent Advanced Water Recovery System (AWRS) test
at NASA JSC [10]. Once these models are done we will
use CORBA to interface them with the rest of our
simulation. Thus, if controls researchers want a
detailed, component-level module to test their ideas they
can use this option. This will allow both breadth across
an integrated ALS system and depth into one of the
components.

The simulation infrastructure also needs additional work.
A one hour time step was chosen for simplicity of
implementation. However, different modules and
different control strategies may need different time
steps. We are working on adjustable time steps to give
the simulation both fine and coarse grained modes.

CONCLUSION

This paper describes an integrated life support
simulation. The goal of the simulation is to stimulate and
support research into integrated control of advanced life
support systems. The simulation includes models of
basic life support components and also models of
malfunctions and stochastic processes. Sensors and
actuators are used to control the simulation. We hope
that this simulation will be used in several different ways.
First, to compare and contrast different control
approaches against a common standard. A researcher
with an idea about how to control a life support system
could test that idea and compare it against others with
minimal investment. Second, we hope that students will
become interested in this domain and use the simulation
in the course of their studies. Finally, we hope that as
real-world life support systems are built that the
simulation can be used to perform “what-if” analysis
during operation and provide for a safer and more
efficient controller.

REFERENCES

1. Finn, Cory K. “Dynamic System Modeling of
Regenerative Life Support Systems,” 29th
International Conference on Environmental
Systems, SAE paper 1999-01-2040.

2. JSC Advanced Life Support Requirements
Document available at
http://advlifesupport.jsc.nasa.gov

3. Goudarzi, Sara and K.C. Ting, “Top Level Modeling
of Crew Component of ALSS,” Proceedings
International Conference on Environmental
Systems, 1999.

4. Tri, T. O., “Bioregenerative Planetary Life Support
Systems Test Complex (BIO-Plex): Test Mission
Objectives and Facility Development,” SAE Paper
1999-01-2186, 29th International Conference on
Environmental Systems, 1999.

5. Edeen, M. et al, “Modeling and Validation of the
Ambient and Variable Pressure Growth Chamber
Models,” SAE Technical Paper Series 932171,
1993.

6. Barta, Daniel J., Castillo, Juan M., and Fortson,
Russ E., “The Biomass Production System for
Bioregenerative Planetary Life Support Systems
Test Complex: Preliminary Designs and
Considerations,” 29th International Conference on
Environmental Systems, SAE paper 1999-01-2188,
1999.

7. JSC Advanced Life Support Baseline Values and
Assumptions Document available at
http://advlifesupport.jsc.nasa.gov

8. Hsiang, Hsien-hsing, Luis Rodriguez and K.C. Ting,
“Top-Level Modeling of Food Processing and
Nutrition(FP&N) Component of Advanced Life
Support System (ALSS),” 30th International

Conference on Environmental Systems, SAE paper
2000-01-2262, 2000.

9. Schreckenghost, Debra, Daniel Ryan, Carroll
Thronesbery and R. Peter Bonasso, “Intelligent
Control of Life Support Systems for Space Habitats,”
Proceedings of the Conference on Innovative
Applications of Artificial Intelligence, 1998.

10. Bonasso, R. P., David Kortenkamp and Carroll
Thronesbery, Intelligent Control of a Water
Recovery System. In AI Magazine, Vol. 24, No. 1,
Spring 2003.

11. Kortenkamp, David, R. Peter Bonasso and Devika
Subramanian, “Distributed, Autonomous Control of
Space Habitats,” in Proceedings IEEE Aerospace
Conference, 2001.

12. Schreckenghost, Debra, Carroll Thronesbery, R.
Peter Bonasso, David Kortenkamp and Cheryl
Martin, “Intelligent Control of Life Support for Space
Missions,” in IEEE Intelligent Systems Magazine,
Vol. 17, No. 5, September/October 2002.

13. Crawford, Sekou, Christopher Pawlowski, and Cory
Finn, “Power Management in Regenerative Life
Support Systems using Market-based Control,” 30th
International Conference on Environmental
Systems, 2000.

14. Holland, John, Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor
Michigan, 1975.

15. Goudarzi, Sara, Jim Cavazzoni and A.J. Both,
“Dynamic Modeling of Crew Performance for Long
Duration Space Missions,” 32nd International
Conference on Environmental Systems, SAE paper
02ICES-196, 2002.

16. Jones, Harry and James Cavazzoni, “Top-Level
Crop Models for Advanced Life Support Analysis,”
30th International Conference on Environmental
Systems, SAE paper 2000-01-2261, 2000.

17. Rodriguez, Luis, Sukwon Kang, John A. Hogan and
K.C. Ting, “Top-Level Modeling of Waste Processing
and Resource Recovery Component of an ALSS,”
29th International Conference on Environmental
Systems, SAE paper 1999-01-2044, 1999.

CONTACT

BioSim is available at http://www.traclabs.com/biosim.
Questions and comments can be directed to David
Kortenkamp at kortenkamp@jsc.nasa.gov or to Scott
Bell at scott@traclabs.com.

ACRONYMS

AES: Air Evaporation System

ALS: Advanced Life Support

API: Application Programmers Interface

AWRS: Advanced Water Recovery System

BWP: Biological Water Processor

CORBA: Common Object Request Broker Architecture

CRS: Carbon Dioxide Reduction System

GA: Genetic Algorithm

GUI: Graphical User Interface

OGS: Oxygen Generation System

ORB: Object Request Broker

PPS: Post Processing System

RO: Reverse Osmosis

VCCR: Variable Configuration CO2 Removal

XML: eXtensible Markup Language

