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ABSTRACT

This  paper describes the role of  transient  simulations, 
heuristic techniques, and real-time integrated control in 
designing and sizing habitat life support systems.  The 
integration  of  these  three  elements  allows  for  more 
accurate  requirements  to  be  derived  in  advance  of 
hardware choices.   As a test  case,  we used a typical 
lunar  surface  habitat.   Large  numbers  of  habitat 
configurations were rapidly tested and evaluated using 
automated  decision  support  tools.   Through  this 
process,  preliminary  sizing  for  habitat  life  support 
systems  were  derived.   Our  preliminary  results  show 
that by using transient simulations and real-time control, 
we substantially  reduced the system mass required to 
meet mission goals.   This has greater  implications for 
general systems analyses and for life support systems. 
It  is  likely  that  transient  models,  real-time  integrated 
control,  and  other  analyses  capable  of  capturing  the 
uncertainties  of  systems  can  be  useful  for  systems 
analyses  much earlier  in  the  system development  life 
cycle than has previously been considered.

INTRODUCTION

Sizing and optimization of habitat life support systems is 
an  ongoing  challenge  for  the  life  support  community. 
Technology  choices,  buffer  sizes,  power  plant  sizing, 
crop planting area and subsystem flow rates all need to 
be  determined  in  order  to  design  an  appropriate  and 
optimal system that meets mission requirements.  Often 
these  decisions  are  made  using  steady  state 
simulations  and  labor  intensive  searches  [1].   Our 
approach  uses  transient  simulations  and  automated 
searches to test large numbers of habitat configurations, 
including those that may not be obvious.  By using an 
integrated  simulation  the  interaction  between 
subsystems  can also be evaluated  which  can provide 
very  different  design  requirements  than  when 

subsystems are considered independently.  Furthermore 
by using a transient model, control can be leveraged to 
provide  a  more  precise  (and  often  smaller)  sizing 
approximation.   The  study  of  malfunctions,  crew 
schedules,  and  reliability  also  become  possible  with 
transient  modeling,  all  of  which  can  be  rapidly  tested 
with heuristic search techniques.   In previous work [2] 
we  examined  how  an  heuristic  tool  called  a  genetic 
algorithm [3] can be used with a dynamic simulation to 
find optimal life support configurations.   In this paper, 
we extend our work to include a real-time PID system 
controller [4] and again used a genetic algorithm and a 
transient life support system model called BioSim [5] to 
find an optimal habitat configuration for a 90 day mission 
to the moon.  

DECISION TOOLS

TRANSIENT MODELS

Transient  models  vary their  output  based on  previous 
inputs  and  allow  the  course  of  the  simulation  to  be 
altered  while  it  is  running.  For  integrated  life  support, 
this allows for buffer sizing, control, malfunctions,  and 
other  properties  to  be  examined  [5].   Furthermore, 
system  dynamics  and  nonlinearities  can  cause 
damaging  instabilities  in  ALS  systems  [7,8].   By 
introducing even simple transient modeling early in the 
design process, we can estimate more appropriate sizes 
of ALS systems.

Our dynamic habitat simulation is based on an existing 
simulation  called  BioSim  [5].   BioSim  has  been 
developed at NASA JSC over the past three years and 
is still under active development.  It is a generic habitat 
simulation,  so  our  first  task  was  to  create  a  specific 
instance  of  BioSim  for  a  lunar  habitat.   Because 
instances of BioSim are stored in an eXtensible Markup 
Language (XML) file, creating a new instance of BioSim 



does not require changing any computer code.  Instead, 
a GUI (Graphical User Interface) tool is being developed 
to connect modules with the resource productions and 
consumptions.   The  configuration  can  then  be  saved 
and  read  directly  into  BioSim,  which  loads  and 
instantiates the simulation.

HEURISTIC TOOLS

Optimization of any system requires searching through a 
large solution space to find optima.  For relatively small 
solution spaces this can be done exhaustively, i.e., try 
every possible solution to guarantee an optimal one. For 
linear problems, techniques such as linear programming 
can identify optimal solutions, if they exist.    As solution 
spaces get larger and models are no longer linear, this 
becomes  increasingly  challenging.   The  problems 
described in this paper have solution spaces that can be 
greater  than  224.  Further,  many  non-linearities  are 
considered  within  BioSim,  including  crew  schedules, 
crop  production,  malfunctions,  and  general  stochastic 
processes.  Thus,  there  is  great  benefit  to  utilizing 
heuristic tools capable of intelligently searching through 
the  search  space,  identifying  promising  zones  where 
optima may lie.  

There  are  many  tools  for  searching  large  solution 
spaces.   For  example,  Monte  Carlo  techniques[8,9] 
probabilistically probe the solution space to hone in on a 
satisfactory solution.  Reinforcement learning [10] uses 
feedback  from the environment  to  search  through the 
solution space.  Hill climbing [12] is a simple technique 
to  move  towards  a  locally  optimal  solution  in  a  large 
space.  Finally, genetic algorithms[3] use biology-based 
insights  to find solutions.   It  is important  to remember 
that  most  of  these  approaches  cannot  guarantee  an 
optimal solution since they do not  exhaustively search 
the  entire  solution  space.   One  exception  is 
reinforcement  learning  which  can  produce  provably 
optimal solutions in very constrained situations.  Instead, 
these approaches exploit the underlying topology of the 
solution space to move in the most promising direction 
and find locally optimal solutions.  In this paper we use 
genetic  algorithms  as  our  automated  search  tool-– 
however it should be noted that our methodology can be 
analogously pursued with any number of such tools.  

REAL-TIME CONTROL

Real-time  control  means  using  computer  programs  to 
read  sensor  values  and  set  actuators  to  establish  or 
maintain  an  equilibrium.   Real-time  control  is  also 
referred  to  as closed-loop  control.   Effective  real-time 
control can reduce buffer sizes by reducing oscillations 
in resource usage over time.   This is similar to how a 
very well  controlled car  moves straight  down the road 
while a poorly controlled car weaves from side to side. 
In the former case the road can be narrower (i.e.,  the 
buffer  smaller)  and  thus  less  costly  for  the  same 
performance.   By  examining  real-time  control  in 
conjunction  with  buffer  and  component  sizing  in 
designing life support systems, we can more accurately 

predict the system sizes and performances.  The real-
time controller used in our experiments is quite simple. 
In  the  future  we  will  evaluate  more  sophisticated 
controller such as those described in [13,14].

GENETIC ALGORITHM

Genetic algorithms are based on the paradigm of natural 
selection.  Successful genes breed with other successful 
genes to create  offspring.   If  the offspring themselves 
are  successful  they breed.   After  each generation the 
entire  population  of  genes  should  be more  and  more 
successful.   The  keys  to  using  a  genetic  algorithm 
approach are to encode the problem as a gene and to 
develop  a  fitness  function  that  measures  a  gene's 
success.  

We implemented a genetic algorithm where the gene is 
a description of the initial configuration of the transient 
models (e.g., crop size, storage capacities, process flow 
rates,  etc.).   The  genetic  algorithm  program  directs 
BioSim to utilize this initial configuration and create an 
instance of the transient model accordingly.  The model 
is simulated until consumable resources are exhausted 
and  the  mission  can  no  longer  continue.   A  fitness 
function  is  utilized  to  compare  the  quality  of  each 
configuration  tested  by  the  genetic  algorithm.   The 
fitness function is how the genetic algorithm evaluates 
genes to determine which genes to save and breed and 
which  genes  to  discard.   The  intention  of  this  fitness 
function is to identify the optimal design for the 90 day 
lunar  mission.  An  optimal  design  will  have  minimum 
mass  while  meeting  mission  objectives.   The  fitness 
function  combines  the  length  of  the  mission  and  the 
Equivalent System Mass (ESM) of the configuration to 
make  these  assessments  as  described  in  the  Metrics 
Section,  below.   ESM is  a  measure  of  the  predicted 
launch  pad  mass  of  the  configuration,  where  a  lower 
mass is preferred for exploration missions [15].  Thus, in 
our  experiments  “preferred”  genes  are  those 
configurations that resulted in the longest running time 
with  the  least  mass.   We  fixed  a  maximum  mission 
length at 90 days as suggested by the Lunar reference 
mission [16].   Thus  after  90 days configurations were 
only distinguished by their ESM.

GENES

Each gene in our genetic algorithm represents a single 
life  support  systems  configuration.   It  consists  of 
between 18 and 21 attributes, each an integer.   At first 
these  integer  values  are  randomly  assigned  to  each 
attribute.  Over time, the genetic algorithm adjusts each 
attribute's value to search for an optimal solution.  We 
looked  at  three  different  habitat  scenarios:  1)  no 
biomass; 2) biomass and crew in the same environment; 
and  3)  biomass  and  crew  in  separate  environments. 
(More detail on the simulated scenario is provided below 
in  the  section  entitled  Example  ALS  Mission.)  The 
attributes and the range of values for each scenario are 
below.



Gene Attribute Name Gene Attribute Range

O2 Injector flowrate 0 - 30 mol/hr

OGS power consumption 0 - 2500 watts

VCCR power consumption 0 - 100000 watts

PowerPS power production 0 - 7000000 watts

CrewEnvironment volume 0 - 20000000 L

O2 Store capacity 0 - 2000 mol

O2 Store initial level 0 - capacity mol

PowerStore capacity 0 - 5000000 watts

PowerStore initial level 0 - capacity watts

FoodStore capacity/initial level 0 - 2000 kg

FoodStore initial level 0 - capacity kg

WaterRS power consumption 0 - 3000 watts

PotableWaterStore capacity 0 - 8000 L

PotableWaterStore initial level 0 - capacity L

GreyWaterStore capacity 0 - 4000 L

GreyWaterStore initial level 0 - capacity L

DirtyWaterStore capacity 0 - 5000 L

DirtyWaterStore initial level 0 - capacity L

Table 1: Gene attributes for all three scenarios

Gene Attribute Name Gene Attribute Range

CO2 Injector flowrate 0 - 30 mol/hr

Tomato Shelf Size 0 – 1.5 m2

Lettuce Shelf Size 0 - 20 m2

Table 2: Gene attributes for scenario 2

Gene Attribute Name Gene Attribute Range

PlantEnvironment volume 0 - 20000000 L

CO2 Injector flowrate 0 - 30 mol/hr

Tomato Shelf Size 0 – 1.5 m2

Lettuce Shelf Size 0 - 20 m2

Table 3: Gene attributes for scenario 4

Please  note,  the  odd  numbering  (1,  2,  4)  of  the 
scenarios is an artifact of precursor studies performed 
by this research team with similar scenarios in  the past 
[2].

METRICS

During  technology  development  it  is  necessary  to  be 
able  differentiate  potential  components,  subsystems, 
and  systems  when  making  funding,  scenario, 
architecture,  and  design  decisions.  Metrics  may  be 
defined  to  highlight  favorable  aspects  of  an individual 
technology  or  suite  of  technologies  to  assist  these 
decisions. The challenge lies in defining useful metrics 
that  may  be  determined  objectively.  Often  objective 
metrics cannot be defined to consider all critical aspects 

of the system and subjective metrics are utilized instead. 
Generally,  it  is  beneficial  to  have  several  metrics 
considering various aspects of  the system providing a 
complete perspective of critical system issues.

Equivalent  system  mass  (ESM)  is  currently  the 
predominant  metric  utilized  in  system analyses  within 
Advanced  Life  Support.  Typical  use  of  ESM  involves 
trade studies of life support technology currently under 
development. ESM is a cost related metric acting as a 
proxy for launch costs by predicting launch pad mass. 
NASA endeavors to minimize launch pad mass as it is 
predicted that  as much as $30,000 could  be spent  to 
impulse  one  kilogram  of  mass  into  Martian  orbit.  In 
general, we determine ESM by simulating components 
within an assumed scenario and solving a steady state 
mass  balance  for  average  throughput  rates  [15]. 
Subsequently,  components are sized for providing the 
determined  throughput  rates.  This  provides  the  mass, 
power,  volume,  and  cooling  requirements  for  each 
component  within  the  system.  Power,  volume,  and 
cooling requirements are converted to mass using cost 
equivalecy factors (Eq. 1). The cost equivalency factors 
are derived to reflect the anticipated support hardware 
that  will  provide  the  necessary  infrastructure  of  the 
system [17].

Eq. 1: Formula to find ESM

The most prominent use of ESM is the determination of 
the ALS metric (Eq. 2). The ALS metric is utilized as a 
progress report and is reported to the US Congress. It 
compares  the  potential  of  utilizing  Advanced  Life 
Support Technologies with the current state of the art in 
the International Space Station.

Eq. 2: ALS Metric

Reliability analysis enables the consideration of several 
metrics that are not currently considered by ESM, but is 
proposed to be added as a tool for systems analysis in 
Advanced  Life  Support.  Reliability  has  several 
implications critical for technology selection including the 
determination  of  maintenance  and  redundancy 
requirements, contingency planning, and the availability 
of  life  support  functions.  Flight  ready  hardware  is  not 
currently  available  for  the  consideration  of  rigorous 
reliability analyses, thus integrated system modeling can 
be  utilized  as  an  alternative.  However,  steady  state 
mass  balances,  as  in  ESM,  are  not  adequate. 
Simulation of variable performance and malfunctions are 
both  necessary  to  effectively  consider  the  reliable 
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performance  of  a  system.  The  modeling  and  analysis 
described  here  is  a  precursor  for  analyses  that  is 
planned for studying reliability. 

For the purpose of this study we developed a metric for 
differentiating between the configurations tested by the 
genetic  algorithm  (Eq.  3).  In  our  experiment  we  are 
searching  for  configurations  which  can  successfully 
execute a 90 day lunar mission. We quickly discovered 
that several configurations are capable of achieving this 
goal.  Thus,  a  second  term  was  added  to  the  fitness 
function  designed  to  reduce  the  consumption  of 
resources.

Eq. 3: Fitness Function with ESM 
proxy

In Eq. 3, f defines the fitness of a configuration, t is the 
length  of  the  mission  in  hours,  wi is  the  weight  of 
attribute  i,  ai is  the value of  attribute  i and  ai,max is  the 
maximum value of attribute i (the list of attributes can be 
found in Table 1). The function f is a unitless measure of 
fitness.  Thus,  the  weight  wt has  unit  hr-1 and  takes  a 
value equal to one.

The first term, wtt, measures the length of time that the 
simulation  runs  without  failure  in  integer  values,  as 
BioSim is a discrete event simulation. The second term 
will  never  be  greater  than  one,  which  allows  the  first 
term to dominate. That is, a missions lasting 2160 hours 
will always be rated as more fit than any mission lasting 
fewer  than  2159  hours,  no  matter  the  amount  of 
resources  consumed.  In  this  analysis,  we  are  most 
concerned with 90 day Lunar missions (2160 hours), so 
we have instructed BioSim to terminate any simulations 
that complete 90 days. This renders the first term equal 
to  2160  for  all  90-day  missions,  whether  or  not  a 
configuration  may  have  been  capable  of  surviving  for 
longer than that time. Since all 90-day missions will be 
more fit than any mission lasting less than 90 days, the 
second term  in  the  fitness  function  then  differentiates 
configurations, selecting those that minimize resources. 
The  second  term  considers  the  sizing  of  the  various 
subsystem attributes, their relative weights, and rewards 
configurations with components sized smaller than their 
maximum  values.  The  attributes  utilized  and  their 
weights are shown in Table 1.

Weights in Table 4 are derived from the theory behind 
the determination of ESM. Each attribute being sized by 
the genetic algorithm imparts some mass load upon the 
system.  The  weights  are  chosen  to  predict  this  load 
based  upon  the  anticipated  mass  of  the  item,  or  the 
mass equivalency suggested for aspects such as power 
or  volume.  Thus,  a  portion  of  the  numerator  of  the 

second term,  
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can be utilized as a proxy for ESM. It will not be ESM 

itself, but rather it will be a relative measure of the ESM 
components traded by the GA. Its units will be kg, as in 
ESM.  Results  of  proxy  analysis  is  included  with  the 
analysis of genetic algorithm results.

Attribute Attribute Unit Weight Weight Unit

O2 Injector mol/hr 2.1606E-04 kg-hr/mol

CO2 Injector mol/hr 2.1606E-04 kg/W

VCRR  power 
req 

W 3.3279E-01 kg/W

OGS power req W 1.3785E-01 kg/W

Power 
production

W 6.2000E-02 kg/W

Crew/crop 
volume

L 1.3310E-01 kg/L

O2  Store 
Capacity

mol 1.0877E-03 kg/mol

O2  Store  initial 
level

mol 3.2000E-02 kg/mol

Power  Store 
Capacity

W 6.8700E-01 kg/W

Power  Store 
initial level

W 0.0000E+00 kg/W

Food  Store 
Capacity

kg 2.3600E+00 kg/kg

Food  Store 
initial level

kg 0.0000E+00 kg/kg

Tomato/Lettuce 
shelf size

m2 3.7010E+01 kg/m2

WaterRS power 
req

W 2.5625E-01 kg/W

Water  (Potable, 
Grey,  Dirty) 
Store Capacity

L 6.8373E-02 kg/L

Water  (Potable, 
Grey,  Dirty) 
Store  initial 
level

L 1.0000E+00 kg/L

Table 4: Each configurable attribute and its contribution 
to the utility function.

EXAMPLE ALS MISSION

For  the  experiments  in  this  paper  we  implemented  a 
specific  instance  of  the  simulation  to  reflect  a  lunar 
habitat.   The  instance  was  designed  with  information 
from an internal JSC memo describing a lunar reference 
mission  [16].   The  reference  mission  assumes  a  four 
person crew with  equal  numbers of  men and women. 
Mission length is 90 days with the habitat initiated and 
operating nominally upon crew arrival.  The landing site 
is the lunar south pole with the sun above the horizon 
80%  of  the  time  and  surface  temperatures  between 
210K and 230K during the day.  The habitat atmosphere 
is composed of 29% oxygen at an overall  pressure of 
65.5 kPa and a leakage rate of 0.00224 kg/day.  Food is 
shipped in most circumstances (although we looked at 
the  addition  of  small  salad  crops)  and  is  0.257 
kg/crewmember-day  moist  food  and  0.665 
kg/crewmember-day of dry food.  Air, water, and waste 
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recovery systems are part of the habitat.  One four-hour 
EVA by one crew member was performed each day of 
the mission.   The EVA takes place through an airlock 
that is 3.7 m3 in size and 10% of the airlock atmosphere 
is lost each time the airlock is used.  

Parameters such as the size of the habitat (specifically 
air  volume),  the  size  of  the  recovery  systems,  the 
amount  of  salad  crops  and  the  size  of  the  power 
subsystem were not fixed and were determined through 
analysis of simulation results. 

EXPERIMENTS

Our  genetic  algorithm  ran  through  6  different  lunar 
mission scenarios described in Table 5.

Scenario Name Description

1NC No crops without control.

1C No crops with control.

2NC Crops  with  integrated  with  crew 
cabin without control.

2C Crops  with  integrated  with  crew 
cabin with control.

4NC Crops  with  separate  cabin  from 
crew without control.

4C Crops  with  separate  cabin  from 
crew with control.

Table 5. Lunar mission scenarios.

Each of these scenarios were then run 4 times, which 
we  termed  A,  B,  C,  and  D.   Each  experiment  was 
stopped  when  convergence  was  determined  in  the 
genetic algorithm.  Convergence was determined when 
the genetic  algorithm settled upon a configuration that 
maximized the fitness function.

The  controller  was  very  basic.   Oxygen  and  carbon 
dioxide were regulated to sea level earth compositions. 
Oxygen  was  generated  using  the  OGS  when  the  O2 

store  was  determined  low,  namely  when  the  levels 
dropped below 30%. Likewise when the potable water 
store dropped below 30%, the WRS was turned on to 
produce more potable water.

The ALS mission ended when resources for either the 
crew or the crops ran too low, or the gas composition of 
the cabin became dangerous, or if the 90 day limit had 
been reached.

RESULTS & DISCUSSION

Components were successfully sized in each of the size 
scenarios simulated by the genetic algorithm. Each run 
of  the  genetic  algorithm  produced  a  most  optimal 
configuration.  The  output  from  each  of  the  four 
simulation runs was averaged to find a predicted mean 
value  sizing  for  each  component.  Further,  95% 
confidence  intervals  for  the  predicted  size  of  each 
component was also determined. Based on the average 
sizing, the proxy of ESM was also determined.

119,965

2,083,974

230,740

3,151,827

341,023

4,386,021

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

1C 1NC 2C 2NC 4C 4NC

Configuration

E
S

M

P
ro

x
y

 (
k

g
)

Figure 1. Chart showing ESM proxy among different ALS configurations.



Figure  1  depicts  the  relationship  between  ESM proxy 
and each of the configurations simulated. Configuration 
1C has the lowest proxy value, although 2C and 4C are 
relatively similar in size. The uncontrolled cases, 1NC, 
2NC, and 4NC each were effectively over an order  of 
magnitude  larger.  The  differences  between  the 
controlled simulations are not currently considered to be 
significant, as will be demonstrated in the discussion of 
the subsequent figures.

It  is  not  unexpected  that  the  controlled  case  should 
outperform  the  uncontrolled  case  with  respect  to  the 
proxy.  The  uncontrolled  case  effectively  simulates 
steady  state  operations of  the system as components 
are operated continuously, although the they may lead 
the system outside the operable envelope of the system. 
Alternatively,  the  controller  monitors  several  system 
state variables and determines which components within 
the  system  may  be  turned  on  or  off  during  the 
simulation.   With  this  basic  level  of  decision  making 
utilized to operate the components within the system, it 
becomes  possible  to  alter  the  sizing  of  some 
components  and  reduce  the  overall  proxy.  The 
significance of these results lies in the simplicity of the 
controller  utilized.  Many  more  sophisticated  integrated 
control  regimes exist  including:  reinforcement learning, 
market based control, and neural networks.  Each can 
be utilized similarly to optimize the system and improved 

results should be anticipated.  We plan to demonstrate 
this in the future.

Figure 2 compares the output  from the controlled  and 
uncontrolled  simulation  of  configuration  one.  Please 
note the use of a logarithmic scale on the vertical axis, 
which  enables  display  of  all  the  components  on  one 
chart.  Due  to  this,  only  the  positive  error  bars  are 
shown, representing the 95% confidence interval, as the 
negative bars are distorted in this view. Seven of the 18 
components  are  differently  sized  by  an  order  of 
magnitude,  explaining  the  disparity  found  in  the  ESM 
proxy (Figure 1), although not all  can be shown to be 
significantly  different.  The  most  notable  results  which 
are significant include power production and the volume 
of the environment. Since the fitness function is based 
upon ESM, power and volume apparently are the most 
attractive areas for the genetic algorithm to consider for 
reduction of resources due to their  relatively high cost 
equivalencies.  This is the focus of  the second term in 
the fitness function. It should also be noted that in some 
cases the genetic algorithm sized components such as 
oxygen storage and the power consumption of the OGS 
larger  in  the  controlled  case  than  in  the  uncontrolled 
case. This is the benefit of effective control. As it turns 
out, there is a proxy benefit to size certain components 
larger, and operate them in a batch format, rather than 

Figure 2. Logarithmic chart of ESM proxy for configuration 1.



continuously as in the uncontrolled case, as dictated by 
the controller.

Figures 3 and 4 show analogous results as in Figure 2 
for  configurations  2  and  4,  respectively.  In  each  case 
power  and  volume  were  distinctly  smaller  in  the 
controlled  case  versus  the  uncontrolled  case.  In 
addition, a similar disparity was identified with respect to 
power storage. Configuration 4 sized a dedicated crop 
volume,  which  similarly  was  sized  smaller  in  the 
controlled simulations. 

Figure  5  compares  the  sizing  chosen  by  the  genetic 
algorithm  for  the  3  controlled  scenarios.  Across  the 
board, it is apparent that only 3 components are sized 
so differently that an order of magnitude separates the 
output:  VCCR,  lettuce  area,  and  initial  potable  water. 
However,  even  with  these  differences,  it  is  likely  that 
these components are not significantly different from a 
statistical  perspective.  Thus,  it  is  concluded  that  the 
differences in the proxy of ESM depicted in Figure 1, are 
anticipated  to  not  be  significant  among  the  controlled 
scenarios. The only differences that remain beyond the 
components which are sized in each scenario are those 
that  are  only  sized  in  certain  scenarios.  Thus,  the 
additional  cost  incurred by configurations 2 and 4 are 
due to the CO2 injector, the crop environment volume, 
and  the  lettuce  and  tomato  growth  chambers.  This  is 
particularly evident in configuration 4, where the genetic 
algorithm sized a very large crop chamber, larger in fact 
than  the  crew  volume.  It  is  likely  that  other 

configurations may exist with smaller crop volumes, but 
the  genetic  algorithm  failed  to  identify  them.  Future 
analyses  are  planned  utilizing  a  more  sophisticated 
genetic algorithm to increase the confidence in results.

IMPLICATIONS

A significant implication of this study is that steady state 
analyses may not be adequate for the complete study of 
life support systems. Certainly there is no disputing that 
certain  research  requiring  transient  models,  such  as 
integrated controls research or reliability,  is impossible 
with steady state models. To support such research the 
necessary  models  will  be  developed.  However,  the 
question  remains  whether  transient  models  should  be 
utilized in areas where traditionally steady state models 
are utilized. 

In  the  case  of  ESM  analyses,  typically  steady  state 
analyses are utilized. For components known to operate 
with  time  variant  performance,  average  values  are 
assumed to be representative. In a transient model, this 
can be simulated by assuming the components operate 
continuously  at  an  average  rate,  as  was  done  in  the 
uncontrolled cases here. ESM proxy for the uncontrolled 
cases was determined based on these average values. 
Interestingly, in the controlled cases, the ESM proxy is 
determined  based  upon  peak  rates  which  define  the 
operating state of components when they turn on. Thus, 
some integration of the actual usage of the components 
would  be  necessary  to  determine  the  average  usage 

Figure 3. Logarithmic chart of ESM proxy for configuration 2.



rates that would be most comparable to the uncontrolled 
ESM  proxy.  Nonetheless,  by  determining  ESM  proxy 
based  on  the  peak  rates,  results  in  a  conservative 
prediction and an averaged prediction would produce a 
lower result.

The challenge remains in the verification and validation 
of such analyses. Future work proposes to consider the 
results  produced  by  traditional  steady  state  analyses 
and comparing it with that of the transient model utilized 
here  to  provide  some  preliminary  verification.  In 
addition, the development of the ability to increase the 
amount  of  analyses  possible,  including  the  study  of 
reliability, is a major area for future investigation.

CONCLUSION

This paper shows that transient simulations coupled with 
an automated search tool and a real-time controller can 
configure and size lunar habitats.  Dynamic simulations 
allow both  control  and insertion  of  malfunctions  to  be 
considered  during  the  design  process.   By  using  an 
automated search tool, we were able to search through 
large  search  spaces  of  lunar  configurations  including 
more  than  224 possible  combinations.   Though  our 

conclusions  with  respect  to  design  requirements  are 
preliminary,  the  transient  simulation  and  automated 
search can aid human designers find configurations that 
might  never  have  been  tried  otherwise.   The  large 
differences  between  the  controlled  and  uncontrolled 
simulations reinforce this  point.   Furthermore,  different 
malfunctions and control schemes can be tested rapidly 
for  viability  allowing   greater  flexibility  in  the  design 
process.   Ultimately,  it  may be worthwhile to  consider 
the  use  of  transient  models  not  only  in  the  study  of 
control  systems  and  reliability  analyses,  but  also  in 
areas traditionally dominated by steady state analyses, 
such as determining ESM.
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CONTACT

BioSim  is  available  at  http://www.traclabs.com/biosim. 
Questions and comments can be directed to Scott Bell 
at  scott.e.bell1@jsc.nasa.gov,  David  Kortenkamp  at 
kortenkamp@jsc.nasa.gov,  or  Luis  Rodriguez  at 
luis.f.rodriguez1@jsc.nasa.gov.

ACRONYMS

XML – eXtensible Markup Language

GUI – Graphical User Interface

ALS – Advanced Life Support

ESM – Equivalent System Mass

WRS – Water Recovery System

VCCR – Variable Configuration CO2  Removal System

OGS – Oxygen Generation System

PowerPS – Power Production System

PID – Proportional Integral Derivative
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