
05ICES-453

Planner-Based Control of Advanced Life Support Systems
Nicola Muscettola

NASA Ames Research Center

David Kortenkamp1, Chuck Fry2, Scott Bell3

1 NASA Johnson Space Center/ER2/Metrica Inc., 2 NASA Ames Research Center/QSS Group Inc., 3 NASA Johnson
Space Center/ER2/SKT Inc.

Copyright © 2005 SAE International

ABSTRACT

The paper describes an approach to the integration of
qualitative and quantitative modeling techniques for
advanced life support (ALS) systems. Developing
reliable control strategies that scale up to fully integrated
life support systems requires augmenting quantitative
models and control algorithms with the abstractions
provided by qualitative, symbolic models and their
associated high-level control strategies. This will allow
for effective management of the combinatorics that
emerge when integrating a large number of ALS
subsystems. By focusing control actions at different
levels of detail and reactivity we can use faster, simpler
responses at the lowest level and predictive but complex
responses at the higher levels of abstraction. In
particular, methods from model-based planning and
scheduling can provide optimal resource management
over long time periods. We describe a reference
implementation of an advanced control system using the
IDEA control architecture developed at NASA Ames
Research Center. IDEA uses planning/scheduling as
the sole reasoning method for predictive and reactive
closed loop control. We describe preliminary
experiments in planner-based control of ALS carried out
on an integrated ALS simulation developed at NASA
Johnson Space Center.

INTRODUCTION

Advanced life support (ALS) systems require complex
control strategies that can maintain stable system
performance and balanced resources with small margins
and minimal buffers. In closed-loop life support systems
there are complex interactions between sub-systems
such as air, water, food production, solids processing,
and the crew. Recent research at NASA Johnson
Space Center has led to significant insights into
autonomous control of ALS systems [1,2,3]. Routine
control of an ALS system is well within the reach of
current techniques. For example, the autonomous
control system described in [4] operated around the
clock for 73 straight days during a 90 day crewed test

with minimal human intervention. The autonomous
control system for a recent test of an advanced water
recovery system operated with minimal human
intervention for over eighteen months [5]. However
these control systems are not able to deal convincingly
with the concurrent and interacting control of several
subsystems. They also fail to effectively coordinate the
effective long term management of resources with the
planning of mission activities. Lastly, they can't
demonstrate effective recovery from significant
anomalies. A solution to these issues is needed in order
to demonstrate life support systems amenable to
efficient long-duration missions such as the human
exploration of Mars.

An effective way to address the complexity of ALS
control consists in representing the plant at multiple
levels of abstraction and operating each increasingly
abstract layer over an increased control horizon.
Abstraction inevitably pushes the representation of the
system from the realm of continuous feed-back control
to the one of discrete or hybrid combinatorial
optimization. At the abstract level it is more appropriate
to determine optimized courses of action, both by the
control plant and by the humans carrying out mission
activities, with primary focus on the efficient long term
utilization of resources. Long-term plans should then
feed control actions and set points to lower-level control
algorithms. The actual plant conditions should be
communicated back up the control chain and
appropriately abstracted if necessary. This allows long-
term optimization to be continuously re-adjusted to
account for actual operating conditions, in a way similar
in spirit to Model-Predictive Control methods [6]. Multiple
levels of abstractions also allow a more effective
management of reactivity, with simpler but faster
responses at the lowest level and more predictive and
complex but slower responses at higher levels of
abstraction.

The integration of long-term planning with short term
action execution and control has been successfully
demonstrated in the realm of spacecraft control [7]. It
demonstrated “fail-operational” scenarios without human
intervention and relying entirely on the on-board control

software. At the highest level these systems build and
maintain action plans/schedules that allow the
evaluation of resource utilization tradeoffs among a set
of competing activities. For example, in the Deep Space
1 Remote Agent experiment the planner had the
responsibility of trading off the allocation of the
spacecraft attitude resource among competing requests
of beacon asteroid imaging and thrusting with the ion
engine in an appropriate direction. (confusing)

This paper reports on a novel control system for ALS
that integrates long-term planning and plan monitoring
with short-term quantitative control. Our main focus is
the augmentation of quantitative models with qualitative
models on which we apply modern temporal planning
algorithms. To ease the evaluation of several possible
competing approach to temporal planning, we are
encoding the ALS planning models into PDDL+. PDDL+
is a representation language broadly used in the
planning and scheduling community. To test our ALS
models we use an existing planner-based controller

called the Intelligent Distributed Execution Architecture
(IDEA) system to control a simple advanced life support
scenario. IDEA was derived from the Remote Agent
experiment and the Mars Exploration Rover MAPGEN
system [8].

In the next section of this paper we describe a life
support simulation that we will use to test our planner-
based controller. Then we discuss the issues in merging
qualitative and quantitative models. Next we introduce
our prototype planner-based controller. Finally, we give
preliminary results and conclusions.

SIMULATION OF ALS SYSTEMS

Most existing models of advanced life support systems
are quantitative and continuous models, e.g., [9]. While
these models are useful for analysis it is difficult to
translate them into the qualitative, symbolic
representations that advanced planning and scheduling
systems use. These continuous models don’t make

Figure 1: An integrated simulation of a life support system

explicit the types of information that are required for
integrated, qualitative reasoning. Quantitative,
continuous models are necessary for understanding
subsystem dynamics, but cross-system analysis offer
the ability to reason over multiple subsystems and to
project consequences of actions into the future [10].

Our approach to simulation of an ALS system has been
developed at NASA Johnson Space Center. We have
simulated most of the advanced life support modules
using the best available information. The simulation is a
process model in that each module takes in certain
resources and produces other resources. They are not
component models, that is, they do not model physical
objects such as valves, pumps, etc. The simulation
consists of multiple modules, each representing a
subsystem of an advanced life support system. Figure 1
shows the modules and connections in our simulation.
The simulator is fully described in [11].

For the experiments in this paper we implemented a
specific instance of the simulation to reflect a lunar
habitat. The instance was designed with information
from an internal JSC memo describing a lunar reference
mission [12]. The reference mission assumes a four
person crew with equal numbers of men and women.
Mission length is 90 days with the habitat initiated and
operating nominally upon crew arrival. The landing site
is the lunar south pole with the sun above the horizon
80% of the time and surface temperatures between
210K and 230K during the day. The habitat atmosphere
is composed of 29% oxygen at an overall pressure of
65.5 kPa and a leakage rate of 0.00224 kg/day. Food is
shipped in most circumstances (although we looked at
the addition of a small number of crops) and is 0.257
kg/crewmember-day moist food and 0.665
kg/crewmember-day of dry food. Air, water, and waste
recovery systems are part of the habitat. One four-hour
EVA by one crew member was performed each day of
the mission. The EVA takes place through an airlock that
is 3.7 m3 in size and 10% of the airlock atmosphere is
lost each time the airlock is used.

Air revitalization is obtained by multiple subsystems and
is based on a recently completed test at the NASA
Johnson Space Center. Gasses like CO2 and O2
produced by the system are either stored (as in the case
of CO2 and O2), vented (as in the case of methane) or
re-injected in other stages of the system. Injectors are
available to take gases from the stores and inject them
into the atmospheres. A control challenge requires three
objectives. The first, and most important, is to maintain
an optimal gas mixture in the crew and biomass
environments. Secondly, the controller needs to
minimize energy use by the accumulator and air
revitalization module. Last, the controller should seek to
minimize store use.

All stages of the system consume power in the form of
electricity. The simulation has two models of power
production. One simulates a nuclear-style power system

that supplies a continuous, fixed amount of power. A
second simulates a solar-style power system that
supplies a varying amount of power. For our
experiments a solar panel was used.

Testing effective and robust control strategies requires
dealing with malfunctions in any component and any
module. Each module of the simulation provides an
application programmer’s interface (API) to introduce
these malfunctions at any time in the simulation. Each
module can have malfunctions of varying degrees of
severity and temporal length. For simplicity, the
malfunctions have been divided into two categories
based on temporal length: permanent and temporary;
and three subcategories of severity: low, medium and
high. These malfunctions are interpreted differently by
each module. For example, a temporary but severe
malfunction in the potable water store would be a large
water leak. A permanent but low severity malfunction in
the power production module would be the loss of a part
of a solar array.

Each module can experience multiple malfunctions at
the same time and the control system must detect them,
schedule the crew to repair them (if repairable), and
monitor to make sure the repairs went accordingly.
Permanent malfunctions are non- repairable and require
the control system to reallocate resources to continue
the mission. A permanent malfunction with the water
recovery system, for example, might cause a decrease
in potable water. The control system could react by
lowering available water to the plants to provide enough
water to the crew.

The simulation also models stochastic processes.
Because the real world is not deterministic, neither is the
simulation. For example, the exact amount of air that is
breathed in by a crew member is different with every
breath. We model this by using a Gaussian function with
adjustable parameters. The Gaussian can be set to
zero to produce a deterministic simulation.

The simulation is controlled via sensors and actuators
which model physical sensors and actuators of an
advanced life support system. Sensors report on values
of the underlying simulation. For example, an O2 sensor
would report the amount of O2 in the atmosphere.
Sensors in the real-world are noisy – that is they do not
always return ground truth. We model sensors with an
adjustable Gaussian noise function. Sensor noise can
be turned off so that the sensors report ground truth.

Actuators are mirror images of sensors – they allow for
control actions to be taken on the simulation. Like
sensors, actuators in the real-world are noisy. For
example, an injector that is told to open for one second
will open for slightly more or less than one second given
its mechanical tolerances. We model this noise as a
Gaussian function. The parameters of the noise function
are adjustable and the function can be turned off.

INTEGRATING QUALITATIVE AND
QUANTITATIVE MODELS

The simulation described above is based on continuous
differential equations. While this is excellent for
continuous simulations these kinds of models do not
translate easily into the declarative and procedural
models required by intelligent control systems. They
need to be augmented with models that capture the
interactions amongst subsystems, the causes and
effects of malfunctions and the duration and times of
control actions. This poses many challenges including:

• Abstraction: How detailed do the models need
to be for effective reasoning? A continuous
curve, like the evolution of ambient temperature
over time, could be represented as a discretized,
piecewise constant/linear function. In how many
pieces should the curve be split?

• Compactness: We want the models to be as
compact as possible. Some qualitative and
quantitative modeling approaches lead to a
proliferation of state variables and task types.
Also the models must describe the states in
which a subsystem does not want some other
subsystem to be in over time. For example,
suppose that a constraint wanted to declare that
while it is in state A, another subsystem cannot
be in state B. This does not prescribe a single
value that has to hold for an extended period of
time, e.g., containing A. It can actually be
satisfied by a series of contiguous transitions,
e.g., while in state A the other subsystem can
transition periodically between C and D an
arbitrary number of times. Representing these
constraints is a key challenge. (example
confusing)

• Maintenance: As we model more and more
complicated systems maintaining accurate
models becomes important. First there is the
verification and validation of the models
themselves – are they correct? Second, how
can we easily change models when the
underlying system changes?

The field of Artificial Intelligence planning relies on
representations of actions and dynamic processes. A
planner [13] uses a compositional model of the world
expressed as a collection of operators. An operator
represents the pre-conditions, post-conditions and
maintenance conditions around a change of state in the
world. Pre-conditions must hold before the change.
Post-condition will hold after, and maintenance
conditions must occur throughout the change. Two kinds
of change can be modeled. The first, actions, are
typically used to represent state transitions explicitly
initiated by the control system. The second, events,
typically represent a spontaneous change in the world
without the explicit interventions of a controller. An

operator-based representation gives the means to
address the challenges described before. Since one of
our goals is to establish a strong connection between
the planning community and the life-support community,
it is important that our representation of the life support
domain be expressed in a language that is as accessible
and standard as possible. This led us to select the
PDDL+ domain modeling language [14], an extension to
the original Planning Domain Definition Language
(PDDL) [15] that has become the standard mean for
expressing benchmark problems in the bi-annual
planning competition [16]. PDDL+ extends PDDL by
allowing expression of continuous processes that act on
states in the system.

Figure 2 shows the representation of a fragment of the
ALS system in PDDL+. The action increase-flow, for
example, allows the controller to increase the flow
through the pipe ?pipe in order to raise the level of the
material contained in the tank above the allowable lower
limit. The lower limit is represented as the difference of
the set-point level and a given deadband, (- ?target
?deadband). The action can be executed any time the
level of material in the tank, (level ?tank), reaches
the lower limit. The effect of the action is to increase flow
through the pipe. We can then give the planning system
initial parameters (e.g., store targets, deadbands, etc.)
and a goal, e.g., (:goal (level-maintained
potable_water_store) and the planning system will
achieve and maintain that goal using the actions and
processes. Between control actions, the tank evolves

(:action increase-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (< (level ?tank) (- ?target ?deadband))
 :effect
 (increase (commanded-flow ?pipe)
 (calculate-amount ?pipe (level ?tank)

?target))
)

(:action decrease-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (> (level ?tank) (+ ?target ?deadband))
 :effect
 (decrease (commanded-flow ?pipe)
 (calculate-amount ?pipe (level ?tank) ?target))
)

(:process maintain-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (and
 (> (level ?tank) (- ?target ?deadband))
 (< (level ?tank) (+ ?target ?deadband)))
 :effect
 (= (level-maintained ?tank) TRUE)
)

(:event store-level-not-within-target
 :parameters
 (?tank ?target ?deadband)
 :preconditions
 (or
 (> (level ?tank) (+ ?target ?deadband))
 (< (level ?tank) (- ?target ?deadband)))
 :effect
 (= (level-maintained ?tank) FALSE)

Figure 2: A sample of PDDL

according to a process, maintain-flow, which at this
level of abstraction is simply represented as a period of
time during which the tank level remain within a
deadband around the target level. The process is
terminated by an event, store-level-not-within-
target which is triggered by the tank level falling
outside the setpoint range. Depending on which “out of
bounds” condition causes the event, the appropriate
control action between increase-flow and
decrease-flow should then be applied to restore the
control goal.

Note that this is not a replacement for low-level, model-
based control (e.g., [6]) that would turn on and off
pumps, valves, etc. to actually fill and drain stores.
Instead, this is a coarse qualitative model that describes
overall system states and goals. This simple model only
represents a nominal situation. In an off nominal
situation it is possible that the controller will not be able
to exert a control action immediately when the tank level
is detected to be out of bounds, i.e., event store-
level-not-within-target occurs. A full model of
the device must represent also all of these off-nominal
processes and events as well as the possible corrective
actions to restore nominal operations.

PLANNER-BASED SUPERVISORY CONTROL

A representation of the system and control actions in
terms of planning operators is not sufficient to build
viable controllers. We also need a framework for
supervisory control that can interpret these models, build
plans, monitor their execution and modify the plan within
the real-time constraints imposed by the physics of the
plant.

The control framework that we are adopting is the IDEA
system [17]. IDEA evolved from the experience of the
Remote Agent. Different approaches, like Remote
Agent and other three-layered control system, use

reasoning mechanisms and control machinery at
different levels. By contrast, each IDEA agent strictly
adheres to a single formal virtual machine and uses a
model-based reactive planner as its core engine for
reasoning. The IDEA architecture is service-based in the
sense that it provides unifying services for fundamental
functions needed for a planner-based controller. It does
not, however, impose the selection of a specific planning
approach, planning algorithm, or reasoning method to
select the control actions. IDEA defines a virtual
machine that organizes these services and a set of
expectations with regard to the functionalities needed by
a planner. For example, the ability for a planning
algorithm to operate on a plan-database concurrently
with other programs, and specific rules for the kind of
interactions that are possible when multiple planners
modify the same section of the database. Any planner
that is capable of satisfying the requirements of IDEA
can be used as the core of an IDEA control agent. To
this date, IDEA agents have been implemented using
EUROPA [18]. These planning technology and planning
algorithms derive from the on-board planner of the
Remote Agent and have been successfully used
throughout the Mars Exploration Rover (MER) mission to
implement MAPGEN. MAPGEN is the science activity
planning system successfully used by the ground
operators that have been operating the Spirit and
Opportunity rovers on Mars.

THE IDEA VIRTUAL MACHINE

Fig. 3 gives an overview of the components of an IDEA
agent. The agent communicates with other agents
(either controlling or controlled by the agent) using an
Agent Relay. The agent relay maintains the IDEA
agent’s execution context by sending or receiving
message invocations (respectively, goals sent to
controlled agents or received from controlling agents)
and receiving or sending method return values (i.e. the
achievement of a goal). The execution context is

Figure 3: An Overview of the IDEA control architecture

synchronized with the internal state of a Reactive
Planner (RP). The RP is the control engine of the IDEA
agent: given a declarative (temporal) model of the agent
activities (i.e. the planning model maintained by the
Model Manager) and the execution context. It is
responsible for generating the control procedure
invocations. Although IDEA’s modeling language is
different from PDDL+, it uses very similar concepts as
constructs, making the translation between the two
straightforward.

IDEA EXECUTION CYCLE

The Plan Runner (PR) executes a simple, finite state
machine that implements the sense/plan/act cycle of the
IDEA agent. Each cycle must be completed within a
finite execution latency. At present, an agent’s latency
corresponds to the minimum quantum of time that can
be measured by an agent, the agent tick. Time is
measured by a Timing Service that is also capable of
warping time, a capability extremely useful in simulation
to significantly compress the time needed to run multi-
day scenarios. The PR operates as follows:

• The PR wakes up at the first tick after a
message has been received from another agent,
or at the tick when a wakeup timer has gone off;

• The state of the Agent Relay is updated with
respect to the information resulting from the
wakeup event (e.g., an event representing the
return value of a control action has been
received);

• The RP is invoked and the planner synchronizes
its internal state with the Agent Relay through
the Plan Service Layer.

• When the RP terminates, the agent relay loads
the new context of execution and sends
appropriate messages to the external agents.
For example, if a control action has been
terminated by the reactive planner, an event
corresponding to the procedure’s return value

(determined by the RP) is sent to the agent’s
goal-setting interface (the controlling agent)

• The RP is invoked to determine what is the next
time at which execution is expected to occur
(barred any external communication). The time
is set in the Timing Services module as the next
wakeup time for the agent;

• The plan runner goes to sleep and waits for an
external message or the expiration of a wakeup
timer.

PLAN DATABASE

The reactive planner continuously updates a data
structure, called Plan Database (PD) (see Fig. 4), which
represents the I/O and internal state of the agent. The
PD describes the past and the future execution state of
the agent as a set of timelines (one for each state
variable). A timeline represents the history of a state
variable over a period of time. Each history is a
sequence of tokens built by the RP keeping the
consistency with respect to the IDEA model. The
reactive planning is to refine the plan database checking
for the consistency of the PD with respect to the current
execution state and providing an execution plan up to a
planning horizon. For a given timeline the past history
represents ended activities and states while the future
history is complete plan of activities with maximum
flexibility, i.e., the start and end times are defined only if
necessary.

Inconsistencies between expectations and actual events
occurring in execution (e.g., a mismatch between actual
and expected time of occurrence for a store-level-
not-within-target) must be reconciled by RP
before execution can continue (but still within the agent
latency constraint). Only when the plan fully conforms to
the model for a specified horizon following the current
tick can the execution cycle be completed.

Figure 4: The plan database

REACTIVE AND DELIBERATIVE PLANNING

In IDEA reactive planning determines the next action on
the basis of sensory input and time lapse wakeups.
More complex problem solving (e.g., long-term task
planning) typically requires more time than the latency
allows. IDEA provides a rich environment for integrating
any number of deliberative planners within the core
execution cycle (Fig. 4). Different specialized planners
can cooperate in building a single plan coherently with
the agent’s model. Also in IDEA the activation for a
deliberative planner is programmed in the model. This
can be obtained by modeling the planner like any other
subsystem, i.e., by specifying a timeline that can take
tokens whose execution explicitly invokes the planner.
This makes it possible to appropriately plan the time at
which deliberate planning can occur compatibly with the
internal and external state modeled by the agent.

PRELIMINARY RESULTS

We have just begun implementing an IDEA controller for
the BioSim application. In this section we discuss our
experimental scenario and we discuss the very first
IDEA, planner-based controllers that we have
implemented.

DEMONSTRATION SCENARIO

Our demonstration scenario is a 90-day expedition on
the lunar surface. It assumes a four-person crew,
performing one extra-vehicular activity per day. A
separate biomass (plant growth) chamber contains two
crops, wheat and white potatoes, and maintains a
separate atmosphere. Both crew and biomass
environments share a common drinking water supply;
both environments also have small air leaks.

The air recycling system includes an oxygen generator,
which electrolyzes drinking water to oxygen and
hydrogen gases, and a carbon dioxide scrubber. The
biomass chamber also serves as part of the air recycling
system, converting carbon dioxide into oxygen and plant
matter via photosynthesis. Storage tanks hold oxygen,
hydrogen, nitrogen, and carbon dioxide gases. A modest
amount of oxygen, nitrogen, and carbon dioxide are
provided at the start of the scenario, to account for
losses due to leakage.

The water recycling system takes grey water and dirty
water from the crew chamber and other sources, and
converts them to potable water and solid waste by a
variety of processes. Dehumidifiers in the crew and
biomass chambers extract excess moisture from the air.
A food processor converts biomass into food for the
crew, dry waste, and grey and dirty water. Electrical
power is generated by a solar cell array, and stored in a
large battery.

The scenario allows for some uncertainty and calamity.
The simulator can induce stochastic errors in the values

reported by sensors, and the commanded positions of
actuators. The simulator can also introduce failures in
components and crops, and unexpected losses of air
and water. The simulated failures we plan to
demonstrate will range from the trivial to the
catastrophic.

The IDEA agent is charged with managing several
variables in this scenario:

• Potable H2O tank level, via control of power to
the water recycling system, and control of water
flow rate to crops

• O2 tank level, via control of the flow rate from the
biomass chamber accumulator, and control of
power to the oxygen generating system

• CO2 level in biomass chamber, via control of
CO2 injector flow rate

• Wheat planting time and amount planted

• Wheat crop harvest time

• White potato crop planting time and amount
planted

• White potato crop harvest

• Biomass chamber light level

The demonstration is a success if the IDEA agent can
keep the crew and plants alive with smaller initial stocks
of consumables (initial O2, H20 and crop seeds) and
lower system mass (smaller potable H20 tank, smaller
O2 tank, smaller power supply, smaller cabin volume,
etc.) when compared to a default control scheme on the
same variables and the same failures.

To do this, the IDEA agent must successfully integrate
two kinds of control: fairly continuous, real-time control of
variables such as the O2 accumulator and CO2 injector;
and fairly discrete, long duration control of variables
such as crop planting and harvesting. It must also
successfully represent and reason with qualitative
information (planting times, etc.) and quantitative
information (diff. equations underlying plant growth, 02
and H2O production and CO2 consumption).

PRELIMINARY IDEA CONTROLLER

As a first step, we have implemented a simple reactive
controller which maintains the levels in the potable water
tank and the oxygen tank. The reactive controller is
intended to be used at the lower level of a hierarchy of
controllers. The desired minimum and maximum levels
for both tanks can be specified manually, or by a master
controller. The reactive control algorithm attempts to
keep the actual levels within those limits, using only

knowledge of the current state of the system and its
immediate past.

The potable water tank's level is controlled by managing
electrical power to the water recycling system, and by
directly controlling the water supply valve to the biomass
chamber. If the level is too low, the water recycling
system is powered to its maximum capacity, or the water
supply valve to the biomass chamber is closed, or both.
Likewise, if the level is too high, the water recycling
system is switched off, or the output to the biomass
chamber is opened to its maximum capacity, or both.

The level in the oxygen tank is controlled similarly by
controlling two sources of oxygen. One of these is the
oxygen generating system, which is controlled by
managing its electrical power. The other source is the
oxygen accumulator, which extracts oxygen produced by
photosynthesis in the biomass chamber; it is controlled
via a valve in the return line to the oxygen tank.

The controller currently uses a simple “on or off”
algorithm, with local memory of the current state of the
controls. For example, if the water tank has been below
the target minimum level for 3 simulation ticks, and the
water recycling system is already at full power and the
water supply valve to the biomass chamber is already
closed, it knows that it can do nothing further, and just
waits for the water level to rise.

Commanding is closed-loop. The IDEA agent expects
confirmation from the simulation that each command has
been completed. This is to allow for recoveries in cases
of transient or persistent faults. The agent does not
currently support retrying commands in the event of a
fault; it simply transitions to a fault state. Nor does the
agent monitor the flow rate sensors to judge the effect of
a command. These are extensions we plan to add in the
near future.

At present the two tanks are controlled independently
from each other. There is one direct interaction between
the two tanks, and several potential indirect interactions.
Control of the oxygen generating system has a direct
effect on the level of the potable water tank. As more
electrical power is fed to the Oxygen Generation System
(OGS) in an attempt to produce more oxygen, its
demand on the potable water the supply increases.
Indirect interactions include contention for limited
electrical power, water flow rate to the biomass chamber
affecting the rate of photosynthesis, and so forth. Such
interactions will be modeled in the future.

CONCLUSION

An effective life support control system can reduce
system mass, reliance on ground controllers, and crew
time spent monitoring life support functions. For these
reasons, life support control systems are an enabling
technology for long-duration space missions. This paper
describes the need for qualitative modeling and

reasoning in order to more effectively control the
interactions and resource constraints of advanced life
support systems. We hope to engage the planning
community by representing the life support domain in a
language that they understand. A first step is to encode
life support models in PDDL+. A second step is to test
those models in a planner-based control architecture.
We are just beginning this process.

ACKNOWLEDGMENTS

This work is funded through a grant from NASA’s Office
of Biological and Physical Research, Advanced
Environmental Monitoring and Control program and from
the Intelligent Systems Project of NASA's Exploration
Mission Directorate

REFERENCES

1. Jorge Leon, David Kortenkamp and Debra
Schreckenghost, “A Planning, Scheduling and
Control Architecture for Advanced Life Support
Systems,” Proceedings of the NASA Workshop on
Planning and Scheduling in Space, 1997.

2. David Kortenkamp, R. Peter Bonasso and Devika
Subramanian, “Distributed, Autonomous Control of
Space Habitats,” IEEE Aerospace Conference,
2001.

3. Schreckenghost, Debra, Carroll Thronesbery, R.
Peter Bonasso, David Kortenkamp and Cheryl
Martin, “Intelligent Control of Life Support for Space
Missions,” in IEEE Intelligent Systems Magazine,
Vol. 17, No. 5, September/October 2002.

4. Debra Schreckenghost, Mary Beth Edeen, R. Peter
Bonasso, and Jon Erickson, “Intelligent Control of
the Product Gas Transfer for Air Revitalization,”
Proceedings of the 28th Conference on
Environmental Systems, 1998.

5. R. P., David Kortenkamp and Carroll Thronesbery,
Intelligent Control of a Water Recovery System. In
AI Magazine, Vol. 24, No. 1, Spring 2003.

6. Abdelwahed, S., J. Wu, G. Biswas, J. Ramirez and
E. J. Manders, “Online Fault Adaptive Control for
Efficient Resource Management in Advanced Life
Support Systems,” Habitation: International Journal
for Human Support Research, Vol. 10, No. 2, pp.
105-116, 2005.

7. Muscettola, N. P. Pandurang Nayak, B. Pell and B.
Williams, “Remote Agent: To Boldly Go Where No AI
System Has Gone Before,” Artificial Intelligence, Vol.
103, No. 1, pp. 5-47, 1998.

8. John Bresina, Ari Jonsson, Paul Morris, and Kanna
Rajan, "Activity Planning for Mars Exploration
Rovers", in Proceedings of 15th International
Conference on Automated Planning and Scheduling
(ICAPS), 2005.

9. Finn, Cory K. “Dynamic System Modeling of
Regenerative Life Support Systems,” 29th
International Conference on Environmental
Systems, SAE paper 1999-01-2040.

10. Benjamin Kuipers, Qualitative Reasoning: Modeling
and Simulation with Incomplete Knowledge, MIT
Press, Cambridge MA, 1994.

11. David Kortenkamp and Scott Bell, “Simulating
Advanced Life Support Systems for Integrated
Controls Research,” to appear in 33rd International
Conference on Environmental Systems, SAE paper
2003-01-2546, 2003.

12. Hanford, T., "Transient Modeling Challenge: A Lunar
Reference Mission for a 90-Day Habitat," NASA JSC
Draft Document, 2004.

13. David E. Smith, Jeremy Frank and Ari K. Jonsson,
“Bridging the Gap Between Planning and
Scheduling,” Knowledge Engineering Review, 15(1),
2000.

14. M. Fox and D. Long “PDDL+: Modeling continuous
time dependent effects,” in Proceedings of the 3rd
International NASA Workshop on Planning and
Scheduling for Space.

15. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A.
Ram, D. Weld and D. Wilkins, “PDDL – The
Planning Domain Definition Language,” Technical
Report, Yale Center for Computational Vision and
Control, available as part of the PDDL distribution at
http://ftp.cs.yale.edu/pub/mcdermott/software/pddl.ta
r.gz, 1998.

16. Drew McDermott, “The 1998 AI Planning Systems
Competition,” AI Magazine, 21(2), 2000.

17. Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.;
and Plaunt, C. IDEA: Planning at the core of
autonomous reactive agents. In Proc. 3rd Int. NASA
WS on Planning and Scheduling for Space, 2002.

18. Jeremy Frank, and Ari K. Jonsson, "Constraint-
based Attribute and Interval Planning", in
Constraints, 8(4), p 339-364, 2003.

CONTACT

Nicola Muscettola, Intelligent Systems Division, NASA
Ames Research Center, MS-269-2, Moffett Field
California 94035, mus@email.arc.nasa.gov

