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ABSTRACT 

The paper describes an approach to the integration of 
qualitative and quantitative modeling techniques for 
advanced life support (ALS) systems.  Developing 
reliable control strategies that scale up to fully integrated 
life support systems requires augmenting quantitative 
models and control algorithms with the abstractions 
provided by qualitative, symbolic models and their 
associated high-level control strategies.  This will allow 
for effective management of the combinatorics that 
emerge when integrating a large number of ALS 
subsystems.  By focusing control actions at different 
levels of detail and reactivity we can use faster, simpler 
responses at the lowest level and predictive but complex 
responses at the higher levels of abstraction.  In 
particular, methods from model-based planning and 
scheduling can provide optimal resource management 
over long time periods.  We describe a reference 
implementation of an advanced control system using the 
IDEA control architecture developed at NASA Ames 
Research Center.  IDEA uses planning/scheduling as 
the sole reasoning method for predictive and reactive 
closed loop control.  We describe preliminary 
experiments in planner-based control of ALS carried out 
on an integrated ALS simulation developed at NASA 
Johnson Space Center. 

 
INTRODUCTION 

Advanced life support (ALS) systems require complex 
control strategies that can maintain stable system 
performance and balanced resources with small margins 
and minimal buffers. In closed-loop life support systems 
there are complex interactions between sub-systems 
such as air, water, food production, solids processing, 
and the crew.  Recent research at NASA Johnson 
Space Center has led to significant insights into 
autonomous control of ALS systems [1,2,3].  Routine 
control of an ALS system is well within the reach of 
current techniques.  For example, the autonomous 
control system described in [4] operated around the 
clock for 73 straight days during a 90 day crewed test 

with minimal human intervention. The autonomous 
control system for a recent test of an advanced water 
recovery system operated with minimal human 
intervention for over eighteen months [5].    However 
these control systems are not able to deal convincingly 
with the concurrent and interacting control of several 
subsystems.  They also fail to effectively coordinate the 
effective long term management of resources with the 
planning of mission activities.  Lastly, they can't 
demonstrate effective recovery from significant 
anomalies. A solution to these issues is needed in order 
to demonstrate life support systems amenable to 
efficient long-duration missions such as the human 
exploration of Mars. 

An effective way to address the complexity of ALS 
control consists in representing the plant at multiple 
levels of abstraction and operating each increasingly 
abstract layer over an increased control horizon. 
Abstraction inevitably pushes the representation of the 
system from the realm of continuous feed-back control 
to the one of discrete or hybrid combinatorial 
optimization. At the abstract level it is more appropriate 
to determine optimized courses of action, both by the 
control plant and by the humans carrying out mission 
activities, with primary focus on the efficient long term 
utilization of resources. Long-term plans should then 
feed control actions and set points to lower-level control 
algorithms. The actual plant conditions should be 
communicated back up the control chain and 
appropriately abstracted if necessary. This allows long-
term optimization to be continuously re-adjusted to 
account for actual operating conditions, in a way similar 
in spirit to Model-Predictive Control methods [6]. Multiple 
levels of abstractions also allow a more effective 
management of reactivity, with simpler but faster 
responses at the lowest level and more predictive and 
complex but slower responses at higher levels of 
abstraction. 

The integration of long-term planning with short term 
action execution and control has been successfully 
demonstrated in the realm of spacecraft control [7].  It 
demonstrated “fail-operational” scenarios without human 
intervention and relying entirely on the on-board control 



software. At the highest level these systems build and 
maintain action plans/schedules that allow the 
evaluation of resource utilization tradeoffs among a set 
of competing activities. For example, in the Deep Space 
1 Remote Agent experiment the planner had the 
responsibility of trading off the allocation of the 
spacecraft attitude resource among competing requests 
of beacon asteroid imaging and thrusting with the ion 
engine in an appropriate direction. (confusing) 

This paper reports on a novel control system for ALS 
that integrates long-term planning and plan monitoring 
with short-term quantitative control. Our main focus is 
the augmentation of quantitative models with qualitative 
models on which we apply modern temporal planning 
algorithms. To ease the evaluation of several possible 
competing approach to temporal planning, we are 
encoding the ALS planning models into PDDL+.  PDDL+ 
is a representation language broadly used in the 
planning and scheduling community. To test our ALS 
models we use an existing planner-based controller 

called the Intelligent Distributed Execution Architecture 
(IDEA) system to control a simple advanced life support 
scenario.  IDEA was derived from the Remote Agent 
experiment and the Mars Exploration Rover MAPGEN 
system [8]. 

In the next section of this paper we describe a life 
support simulation that we will use to test our planner-
based controller.  Then we discuss the issues in merging 
qualitative and quantitative models.  Next we introduce 
our prototype planner-based controller.  Finally, we give 
preliminary results and conclusions.    

SIMULATION OF ALS SYSTEMS 

Most existing models of advanced life support systems 
are quantitative and continuous models, e.g., [9].  While 
these models are useful for analysis it is difficult to 
translate them into the qualitative, symbolic 
representations that advanced planning and scheduling 
systems use.  These continuous models don’t make 

 

Figure 1: An integrated simulation of a life support system 



explicit the types of information that are required for 
integrated, qualitative reasoning.  Quantitative, 
continuous models are necessary for understanding 
subsystem dynamics, but cross-system analysis offer 
the ability to reason over multiple subsystems and to 
project consequences of actions into the future [10].   

Our approach to simulation of an ALS system has been 
developed at NASA Johnson Space Center.  We have 
simulated most of the advanced life support modules 
using the best available information.  The simulation is a 
process model in that each module takes in certain 
resources and produces other resources.  They are not 
component models, that is, they do not model physical 
objects such as valves, pumps, etc.  The simulation 
consists of multiple modules, each representing a 
subsystem of an advanced life support system.  Figure 1 
shows the modules and connections in our simulation. 
The simulator is fully described in [11]. 

For the experiments in this paper we implemented a 
specific instance of the simulation to reflect a lunar 
habitat. The instance was designed with information 
from an internal JSC memo describing a lunar reference 
mission [12]. The reference mission assumes a four 
person crew with equal numbers of men and women. 
Mission length is 90 days with the habitat initiated and 
operating nominally upon crew arrival. The landing site 
is the lunar south pole with the sun above the horizon 
80% of the time and surface temperatures between 
210K and 230K during the day. The habitat atmosphere 
is composed of 29% oxygen at an overall pressure of 
65.5 kPa and a leakage rate of 0.00224 kg/day. Food is 
shipped in most circumstances (although we looked at 
the addition of a small number of crops) and is 0.257 
kg/crewmember-day moist food and 0.665 
kg/crewmember-day of dry food. Air, water, and waste 
recovery systems are part of the habitat. One four-hour 
EVA by one crew member was performed each day of 
the mission. The EVA takes place through an airlock that 
is 3.7 m3 in size and 10% of the airlock atmosphere is 
lost each time the airlock is used.  

Air revitalization is obtained by multiple subsystems and 
is based on a recently completed test at the NASA 
Johnson Space Center.  Gasses like CO2 and O2 
produced by the system are either stored (as in the case 
of CO2 and O2), vented (as in the case of methane) or 
re-injected in other stages of the system. Injectors are 
available to take gases from the stores and inject them 
into the atmospheres.  A control challenge requires three 
objectives.  The first, and most important, is to maintain 
an optimal gas mixture in the crew and biomass 
environments.  Secondly, the controller needs to 
minimize energy use by the accumulator and air 
revitalization module.  Last, the controller should seek to 
minimize store use.  

All stages of the system consume power in the form of 
electricity. The simulation has two models of power 
production.  One simulates a nuclear-style power system 

that supplies a continuous, fixed amount of power.  A 
second simulates a solar-style power system that 
supplies a varying amount of power.  For our 
experiments a solar panel was used.  

Testing effective and robust control strategies requires 
dealing with malfunctions in any component and any 
module. Each module of the simulation provides an 
application programmer’s interface (API) to introduce 
these malfunctions at any time in the simulation.  Each 
module can have malfunctions of varying degrees of 
severity and temporal length.  For simplicity, the 
malfunctions have been divided into two categories 
based on temporal length: permanent and temporary; 
and three subcategories of severity: low, medium and 
high.  These malfunctions are interpreted differently by 
each module.  For example, a temporary but severe 
malfunction in the potable water store would be a large 
water leak.  A permanent but low severity malfunction in 
the power production module would be the loss of a part 
of a solar array.   

Each module can experience multiple malfunctions at 
the same time and the control system must detect them, 
schedule the crew to repair them (if repairable), and 
monitor to make sure the repairs went accordingly.  
Permanent malfunctions are non- repairable and require 
the control system to reallocate resources to continue 
the mission.  A permanent malfunction with the water 
recovery system, for example, might cause a decrease 
in potable water.  The control system could react by 
lowering available water to the plants to provide enough 
water to the crew. 

The simulation also models stochastic processes.  
Because the real world is not deterministic, neither is the 
simulation.  For example, the exact amount of air that is 
breathed in by a crew member is different with every 
breath.  We model this by using a Gaussian function with 
adjustable parameters.  The Gaussian can be set to 
zero to produce a deterministic simulation. 

The simulation is controlled via sensors and actuators 
which model physical sensors and actuators of an 
advanced life support system.  Sensors report on values 
of the underlying simulation.  For example, an O2 sensor 
would report the amount of O2 in the atmosphere.  
Sensors in the real-world are noisy – that is they do not 
always return ground truth.  We model sensors with an 
adjustable Gaussian noise function.  Sensor noise can 
be turned off so that the sensors report ground truth. 

Actuators are mirror images of sensors – they allow for 
control actions to be taken on the simulation.  Like 
sensors, actuators in the real-world are noisy.  For 
example, an injector that is told to open for one second 
will open for slightly more or less than one second given 
its mechanical tolerances.  We model this noise as a 
Gaussian function.  The parameters of the noise function 
are adjustable and the function can be turned off.   



INTEGRATING QUALITATIVE AND 
QUANTITATIVE MODELS 

The simulation described above is based on continuous 
differential equations.  While this is excellent for 
continuous simulations these kinds of models do not 
translate easily into the declarative and procedural 
models required by intelligent control systems.  They 
need to be augmented with models that capture the 
interactions amongst subsystems, the causes and 
effects of malfunctions and the duration and times of 
control actions.  This poses many challenges including:  

• Abstraction:  How detailed do the models need 
to be for effective reasoning?  A continuous 
curve, like the evolution of ambient temperature 
over time, could be represented as a discretized, 
piecewise constant/linear function. In how many 
pieces should the curve be split?  

• Compactness: We want the models to be as 
compact as possible.  Some qualitative and 
quantitative modeling approaches lead to a 
proliferation of state variables and task types. 
Also the models must describe the states in 
which a subsystem does not want some other 
subsystem to be in over time. For example, 
suppose that a constraint wanted to declare that 
while it is in state A, another subsystem cannot 
be in state B. This does not prescribe a single 
value that has to hold for an extended period of 
time, e.g., containing A. It can actually be 
satisfied by a series of contiguous transitions, 
e.g., while in state A the other subsystem can 
transition periodically between C and D an 
arbitrary number of times.  Representing these 
constraints is a key challenge.  (example 
confusing) 

• Maintenance: As we model more and more 
complicated systems maintaining accurate 
models becomes important.  First there is the 
verification and validation of the models 
themselves – are they correct?  Second, how 
can we easily change models when the 
underlying system changes? 

The field of Artificial Intelligence planning relies on 
representations of actions and dynamic processes. A 
planner [13] uses a compositional model of the world 
expressed as a collection of operators. An operator 
represents the pre-conditions, post-conditions and 
maintenance conditions around a change of state in the 
world. Pre-conditions must hold before the change. 
Post-condition will hold after, and maintenance 
conditions must occur throughout the change. Two kinds 
of change can be modeled. The first, actions, are 
typically used to represent state transitions explicitly 
initiated by the control system.  The second, events,  
typically represent a spontaneous change in the world 
without the explicit interventions of a controller. An 

operator-based representation gives the means to 
address the challenges described before. Since one of 
our goals is to establish a strong connection between 
the planning community and the life-support community, 
it is important that our representation of the life support 
domain be expressed in a language that is as accessible 
and standard as possible. This led us to select the 
PDDL+ domain modeling language [14], an extension to 
the original Planning Domain Definition Language 
(PDDL) [15] that has become the standard mean for 
expressing benchmark problems in the bi-annual 
planning competition [16]. PDDL+ extends PDDL by 
allowing expression of continuous processes that act on 
states in the system.   

Figure 2 shows the representation of a fragment of the 
ALS system in PDDL+. The action increase-flow, for 
example, allows the controller to increase the flow 
through the pipe ?pipe in order to raise the level of the 
material contained in the tank above the allowable lower 
limit.  The lower limit is represented as the difference of 
the set-point level and a given deadband, (- ?target 
?deadband). The action can be executed any time the 
level of material in the tank, (level ?tank), reaches 
the lower limit. The effect of the action is to increase flow 
through the pipe.  We can then give the planning system 
initial parameters (e.g., store targets, deadbands, etc.) 
and a goal, e.g., (:goal (level-maintained 
potable_water_store) and the planning system will 
achieve and maintain that goal using the actions and 
processes.  Between control actions, the tank evolves 

(:action increase-flow 
 :parameters  
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (< (level ?tank) (- ?target ?deadband)) 
 :effect 
  (increase (commanded-flow ?pipe) 
                   (calculate-amount ?pipe (level ?tank) 

?target)) 
) 
 
(:action decrease-flow 
 :parameters  
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (> (level ?tank) (+ ?target ?deadband)) 
 :effect 
  (decrease (commanded-flow ?pipe) 
         (calculate-amount ?pipe (level ?tank) ?target)) 
) 
 
(:process maintain-flow 
 :parameters 
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (and 
   (> (level ?tank) (- ?target ?deadband)) 
   (< (level ?tank) (+ ?target ?deadband))) 
 :effect  
  (= (level-maintained ?tank) TRUE) 
) 
 
(:event store-level-not-within-target 
 :parameters 
  (?tank ?target ?deadband) 
 :preconditions 
  (or 
   (> (level ?tank) (+ ?target ?deadband)) 
   (< (level ?tank) (- ?target ?deadband))) 
 :effect 
  (= (level-maintained ?tank) FALSE) 
 
Figure 2: A sample of PDDL 



according to a process, maintain-flow, which at this 
level of abstraction is simply represented as a period of 
time during which the tank level remain within a 
deadband around the target level. The process is 
terminated by an event, store-level-not-within-
target which is triggered by the tank level falling 
outside the setpoint range. Depending on which “out of 
bounds” condition causes the event, the appropriate 
control action between increase-flow and 
decrease-flow should then be applied to restore the 
control goal. 

Note that this is not a replacement for low-level, model-
based control (e.g., [6]) that would turn on and off 
pumps, valves, etc. to actually fill and drain stores.  
Instead, this is a coarse qualitative model that describes 
overall system states and goals. This simple model only 
represents a nominal situation. In an off nominal 
situation it is possible that the controller will not be able 
to exert a control action immediately when the tank level 
is detected to be out of bounds, i.e., event store-
level-not-within-target occurs. A full model of 
the device must represent also all of these off-nominal 
processes and events as well as the possible corrective 
actions to restore nominal operations. 

PLANNER-BASED SUPERVISORY CONTROL 

A representation of the system and control actions in 
terms of planning operators is not sufficient to build 
viable controllers. We also need a framework for 
supervisory control that can interpret these models, build 
plans, monitor their execution and modify the plan within 
the real-time constraints imposed by the physics of the 
plant. 

The control framework that we are adopting is the IDEA 
system [17]. IDEA evolved from the experience of the 
Remote Agent.  Different approaches, like Remote 
Agent and other three-layered control system, use 

reasoning mechanisms and control machinery at 
different levels.  By contrast, each IDEA agent strictly 
adheres to a single formal virtual machine and uses a 
model-based reactive planner as its core engine for 
reasoning. The IDEA architecture is service-based in the 
sense that it provides unifying services for fundamental 
functions needed for a planner-based controller. It does 
not, however, impose the selection of a specific planning 
approach, planning algorithm, or reasoning method to 
select the control actions. IDEA defines a virtual 
machine that organizes these services and a set of 
expectations with regard to the functionalities needed by 
a planner.  For example, the ability for a planning 
algorithm to operate on a plan-database concurrently 
with other programs, and specific rules for the kind of 
interactions that are possible when multiple planners 
modify the same section of the database. Any planner 
that is capable of satisfying the requirements of IDEA 
can be used as the core of an IDEA control agent. To 
this date, IDEA agents have been implemented using 
EUROPA [18]. These planning technology and planning 
algorithms derive from the on-board planner of the 
Remote Agent and have been successfully used 
throughout the Mars Exploration Rover (MER) mission to 
implement MAPGEN. MAPGEN  is the science activity 
planning system successfully used by the ground 
operators that have been operating the Spirit and 
Opportunity rovers on Mars. 

THE IDEA VIRTUAL MACHINE  

Fig. 3 gives an overview of the components of an IDEA 
agent. The agent communicates with other agents 
(either controlling or controlled by the agent) using an 
Agent Relay. The agent relay maintains the IDEA 
agent’s execution context by sending or receiving 
message invocations (respectively, goals sent to 
controlled agents or received from controlling agents) 
and receiving or sending method return values (i.e. the 
achievement of a goal). The execution context is 

 

Figure 3:  An Overview of the IDEA control architecture 



synchronized with the internal state of a Reactive 
Planner (RP). The RP is the control engine of the IDEA 
agent: given a declarative (temporal) model of the agent 
activities (i.e. the planning model maintained by the 
Model Manager) and the execution context. It is 
responsible for generating the control procedure 
invocations. Although IDEA’s modeling language is 
different from PDDL+, it uses very similar concepts as 
constructs, making the translation between the two 
straightforward. 

IDEA EXECUTION CYCLE 

The Plan Runner (PR) executes a simple, finite state 
machine that implements the sense/plan/act cycle of the 
IDEA agent. Each cycle must be completed within a 
finite execution latency. At present, an agent’s latency 
corresponds to the minimum quantum of time that can 
be measured by an agent, the agent tick. Time is 
measured by a Timing Service that is also capable of 
warping time, a capability extremely useful in simulation 
to significantly compress the time needed to run multi-
day scenarios. The PR operates as follows:  

• The PR wakes up at the first tick after a 
message has been received from another agent, 
or at the tick when a wakeup timer has gone off; 

• The state of the Agent Relay is updated with 
respect to the information resulting from the 
wakeup event (e.g., an event representing the 
return value of a control action has been 
received); 

• The RP is invoked and the planner synchronizes 
its internal state with the Agent Relay through 
the Plan Service Layer.   

• When the RP terminates, the agent relay loads 
the new context of execution and sends 
appropriate messages to the external agents. 
For example, if a control action has been 
terminated by the reactive planner, an event 
corresponding to the procedure’s return value 

(determined by the RP) is sent to the agent’s 
goal-setting interface (the controlling agent) 

• The RP is invoked to determine what is the next 
time at which execution is expected to occur 
(barred any external communication). The time 
is set in the Timing Services module as the next 
wakeup time for the agent; 

• The plan runner goes to sleep and waits for an 
external message or the expiration of a wakeup 
timer. 

PLAN DATABASE  

The reactive planner continuously updates a data 
structure, called Plan Database (PD) (see Fig. 4), which 
represents the I/O and internal state of the agent. The 
PD describes the past and the future execution state of 
the agent as a set of timelines (one for each state 
variable). A timeline represents the history of a state 
variable over a period of time. Each history is a 
sequence of tokens built by the RP keeping the 
consistency with respect to the IDEA model. The 
reactive planning is to refine the plan database checking 
for the consistency of the PD with respect to the current 
execution state and providing an execution plan up to a 
planning horizon.  For a given timeline the past history 
represents ended activities and states while the future 
history is complete plan of activities with maximum 
flexibility, i.e., the start and end times are defined only if 
necessary.   

Inconsistencies between expectations and actual events 
occurring in execution (e.g., a mismatch between actual 
and expected time of occurrence for a store-level-
not-within-target) must be reconciled by RP 
before execution can continue (but still within the agent 
latency constraint). Only when the plan fully conforms to 
the model for a specified horizon following the current 
tick can the execution cycle be completed.  

Figure 4:  The plan database 



REACTIVE AND DELIBERATIVE PLANNING  

In IDEA reactive planning determines the next action on 
the basis of sensory input and time lapse wakeups. 
More complex problem solving (e.g., long-term task 
planning) typically requires more time than the latency 
allows. IDEA provides a rich environment for integrating 
any number of deliberative planners within the core 
execution cycle (Fig. 4). Different specialized planners 
can cooperate in building a single plan coherently with 
the agent’s model. Also in IDEA the activation for a 
deliberative planner is programmed in the model. This 
can be obtained by modeling the planner like any other 
subsystem, i.e., by specifying a timeline that can take 
tokens whose execution explicitly invokes the planner. 
This makes it possible to appropriately plan the time at 
which deliberate planning can occur compatibly with the 
internal and external state modeled by the agent. 

PRELIMINARY RESULTS 

We have just begun implementing an IDEA controller for 
the BioSim application.  In this section we discuss our 
experimental scenario and we discuss the very first 
IDEA, planner-based controllers that we have 
implemented.    

DEMONSTRATION SCENARIO 

Our demonstration scenario is a 90-day expedition on 
the lunar surface. It assumes a four-person crew, 
performing one extra-vehicular activity per day. A 
separate biomass (plant growth) chamber contains two 
crops, wheat and white potatoes, and maintains a 
separate atmosphere. Both crew and biomass 
environments share a common drinking water supply; 
both environments also have small air leaks.  

The air recycling system includes an oxygen generator, 
which electrolyzes drinking water to oxygen and 
hydrogen gases, and a carbon dioxide scrubber. The 
biomass chamber also serves as part of the air recycling 
system, converting carbon dioxide into oxygen and plant 
matter via photosynthesis. Storage tanks hold oxygen, 
hydrogen, nitrogen, and carbon dioxide gases. A modest 
amount of oxygen, nitrogen, and carbon dioxide are 
provided at the start of the scenario, to account for 
losses due to leakage.  

The water recycling system takes grey water and dirty 
water from the crew chamber and other sources, and 
converts them to potable water and solid waste by a 
variety of processes. Dehumidifiers in the crew and 
biomass chambers extract excess moisture from the air. 
A food processor converts biomass into food for the 
crew, dry waste, and grey and dirty water. Electrical 
power is generated by a solar cell array, and stored in a 
large battery.  

The scenario allows for some uncertainty and calamity. 
The simulator can induce stochastic errors in the values 

reported by sensors, and the commanded positions of 
actuators. The simulator can also introduce failures in 
components and crops, and unexpected losses of air 
and water. The simulated failures we plan to 
demonstrate will range from the trivial to the 
catastrophic. 

The IDEA agent is charged with managing several 
variables in this scenario: 

• Potable H2O tank level, via control of power to 
the water recycling system, and control of water 
flow rate to crops 

• O2 tank level, via control of the flow rate from the 
biomass chamber accumulator, and control of 
power to the oxygen generating system 

• CO2 level in biomass chamber, via control of 
CO2 injector flow rate 

• Wheat planting time and amount planted 

• Wheat crop harvest time 

• White potato crop planting time and amount 
planted 

• White potato crop harvest 

• Biomass chamber light level 

The demonstration is a success if the IDEA agent can 
keep the crew and plants alive with smaller initial stocks 
of consumables (initial O2, H20 and crop seeds) and 
lower system mass (smaller potable H20 tank, smaller 
O2 tank, smaller power supply, smaller cabin volume, 
etc.) when compared to a default control scheme on the 
same variables and the same failures. 

To do this, the IDEA agent must successfully integrate 
two kinds of control: fairly continuous, real-time control of 
variables such as the O2 accumulator and CO2 injector; 
and fairly discrete, long duration control of variables 
such as crop planting and harvesting. It must also 
successfully represent and reason with qualitative 
information (planting times, etc.) and quantitative 
information (diff. equations underlying plant growth, 02 
and H2O production and CO2 consumption). 

PRELIMINARY IDEA CONTROLLER 

As a first step, we have implemented a simple reactive 
controller which maintains the levels in the potable water 
tank and the oxygen tank. The reactive controller is 
intended to be used at the lower level of a hierarchy of 
controllers. The desired minimum and maximum levels 
for both tanks can be specified manually, or by a master 
controller. The reactive control algorithm attempts to 
keep the actual levels within those limits, using only 



knowledge of the current state of the system and its 
immediate past. 

The potable water tank's level is controlled by managing 
electrical power to the water recycling system, and by 
directly controlling the water supply valve to the biomass 
chamber. If the level is too low, the water recycling 
system is powered to its maximum capacity, or the water 
supply valve to the biomass chamber is closed, or both. 
Likewise, if the level is too high, the water recycling 
system is switched off, or the output to the biomass 
chamber is opened to its maximum capacity, or both. 

The level in the oxygen tank is controlled similarly by 
controlling two sources of oxygen. One of these is the 
oxygen generating system, which is controlled by 
managing its electrical power. The other source is the 
oxygen accumulator, which extracts oxygen produced by 
photosynthesis in the biomass chamber; it is controlled 
via a valve in the return line to the oxygen tank. 

The controller currently uses a simple “on or off” 
algorithm, with local memory of the current state of the 
controls. For example, if the water tank has been below 
the target minimum level for 3 simulation ticks, and the 
water recycling system is already at full power and the 
water supply valve to the biomass chamber is already 
closed, it knows that it can do nothing further, and just 
waits for the water level to rise. 

Commanding is closed-loop. The IDEA agent expects 
confirmation from the simulation that each command has 
been completed. This is to allow for recoveries in cases 
of transient or persistent faults. The agent does not 
currently support retrying commands in the event of a 
fault; it simply transitions to a fault state. Nor does the 
agent monitor the flow rate sensors to judge the effect of 
a command. These are extensions we plan to add in the 
near future. 

At present the two tanks are controlled independently 
from each other. There is one direct interaction between 
the two tanks, and several potential indirect interactions. 
Control of the oxygen generating system has a direct 
effect on the level of the potable water tank. As more 
electrical power is fed to the Oxygen Generation System 
(OGS) in an attempt to produce more oxygen, its 
demand on the potable water the supply increases. 
Indirect interactions include contention for limited 
electrical power, water flow rate to the biomass chamber 
affecting the rate of photosynthesis, and so forth. Such 
interactions will be modeled in the future. 

CONCLUSION 

An effective life support control system can reduce 
system mass, reliance on ground controllers, and crew 
time spent monitoring life support functions.  For these 
reasons, life support control systems are an enabling 
technology for long-duration space missions.  This paper 
describes the need for qualitative modeling and 

reasoning in order to more effectively control the 
interactions and resource constraints of advanced life 
support systems.  We hope to engage the planning 
community by representing the life support domain in a 
language that they understand.  A first step is to encode 
life support models in PDDL+.  A second step is to test 
those models in a planner-based control architecture.  
We are just beginning this process.   
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