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ABSTRACT  

High costs and extreme risks prevent the life testing of 
NASA hardware in relevant scenarios. These inherent 
limitations prevent the determination of sound reliability 
bounds for NASA hardware, thus it is unclear the true 
risk assumed in future missions. The simulation 
infrastructure for determining these risks is developed in 
a configurable format here. Preliminary results in 
preparation for validation testing are reported. A 
stochastic filter simulates non-deterministic output from 
the various unit processes. A maintenance and repair 
module has been implemented with several levels of 
complexity. Two approaches to simulated system life 
testing have been proposed for future validation. 

BACKGROUND 

Unlike the software or transistor industry, the cost and 
risk involved in determination of system reliability is very 
high for NASA. Flight ready hardware is often built only 
once due to the extremely high production costs. A 
better understanding of reliability and robustness is 
motivated by recent NASA objectives of implementing a 
Lunar Outpost. Such long-term missions offer stark 
contrast in life support to current implementations of the 
International Space Station (ISS) and the Space Shuttle. 
Regenerative systems become an increasing necessity 
as mission length increases. It is also suggested that the 
Lunar Outpost shall be utilized as a test bed for Martian 
exploration indicating the mission lengths and the 
necessity for regenerative systems will only increase 
going forward. (NASA, 2006)  

Such systems will need to rely on resources within the 
system, operating nearly independently from Earth. 
Currently considered architectures indicate that 
resources will only arrive on a six month basis to a Lunar 
Outpost. Intervals on Mars may be as long as 2 years. 
As mission length increases, even hardware with the 
highest manufacturing standards should be expected to 

fail on occasion, however, the system level impacts are 
not entirely clear in any complex system. It is desired to 
increase this understanding such that redundancy, 
contingency, and maintenance planning can occur. 

Current NASA alternatives for contingency planning 
involve primarily anecdotal evidence stored in 'lessons 
learned' databases such as the ISS Risk Management 
Application (IRMA) and a Probability Risk Assessment 
(Futron and Perera, 2005). The IRMA utilizes a two 
dimensional risk assessment approach for analysis of 
systems. The 'likelihood' and 'consequence' of an event 
is judged by designers, operators, astronauts, and 
analysts in a two dimensional matrix. If both the 
likelihood is high and the consequence is dire then 
action in this area is prioritized by ISS program 
managers. The limitation to this is system is that it does 
not rely on actual life data, but rather on the expert 
opinions of individuals close to the system. As admirable 
as these individuals are, it is impossible to completely 
remove all subjectivity in this process. 

Similarly, NASA has ongoing work in Probabilistic Risk 
Assessment (PRA) studying the failure modes of the 
Space Shuttle (Pate-Cornell, Dillon, and Guikema, 
2005). This approach also relies heavily on expert 
opinion. Failure modes are identified, possibly via the 
IRMA database, but any individual active in Shuttle 
design, maintenance, operations, or analysis. The 
impact of faults is tracked through the system as these 
failed components impact related system components. 
The probability of subsequent failures is determined via 
experiment or assumed. The probability of these failures 
causing a total system failure is determined by 
considering the cascade of conditional probabilities. The 
limitation in this system is the magnitude of the effort 
required to assemble the entire fault tree. All of the 
conditional probabilities will never be completely known 
due to limited ability to test each combination of system 
failures in relevant environments. Expert opinions are 
utilized in the areas where actual data is lacking, 



however, this suffers from the same objectivity 
limitations as IRMA. 

Other alternative approaches exist as well including 
Failure Modes and Effects Analysis (FMEA) (Case 
Jones, 1978), What-If (Arsham et al., 1989, Arsham, 
1990), and HAZOP (Center for Chemical Process 
Safety, 1992, Vesely, et al., 1981, Kletz, 1999), all 
coming from analogous challenges existing from within 
the chemical processing industry (refs). Effectiveness in 
each case depends on the focus and objectivity of the 
assessment teams, the availability of quality data, and 
the ability to acquire actual missing data to eliminate the 
prospect of subjectivity.  

Classical approaches to describing and analyzing 
system reliability are well documented (2, 3, 4, 5). Life 
testing of component hardware and integrated system is 
the key to enabling those studies. Due to cost and risk to 
crew and expensive hardware these studies are rarely 
undertaken in current NASA system development. 
Although simulation tools have been proposed for 
predicting reliability for complex systems, very little work 
has considered the reliability of repairable systems in the 
space applications previously.  

While the model-based approach suggested here is not 
devoid of the lack of data problem, it is offered as a 
compromise between the classical data driven 
approaches and the expert analysis oriented approaches 
described above. The system will accept either actual 
experimental data, where available, or assumptions 
based on the opinions of key experts in each field. Then 
analysts will simulate the integrated systems seeking 
insight in desired performance metrics. The BioSim 
simulation tool utilized here has been shown to be highly 
reconfigurable (Rodríguez, Bell, and Kortenkamp, 2006). 
This is suitable for optimization analyses seeking system 
configurations inherently reliable and robust. 

It is anticipated that by creating a virtual environment 
capable of testing component level and integrated 
system reliability the following advantages should result:  

1. Virtual testing can lead us to determine minimum 
component reliability which provide various system 
level reliabilities 

2. Maintenance scheduling can be experimented with 
to determine the workload for crew members  

3. The trade off between crew time costs, redundant 
hardware, and other contingency plans can be 
considered for their impact on system reliability. 

4. Parametric analyses considering equivalent system 
mass, mean time to failure, mean time between 
failure, and mean residual life among others should 
all benefit from an additional reliability assessment 
contingency planning resource. 

 
MODELING AND SIMULATION APPROACH 

Two assumptions have been made in order to simulate 
stochastic performance and random failures within life 

support systems. The first is that non-deterministic 
systems will drift away from nominal in a 'random walk'. 
This drift in any unit process can affect the subsequent 
unit process in the chain by providing off-nominal input 
to that system. If unit process models are responsive to 
this effect, their output should also reflect an engendered 
drift. If this is true, then there is always a probability that 
the system state will randomly drift into a condition that 
is unsafe for the crew—or a system failure. This affect 
has been captured by providing a mechanism for 
stochastic performance of any unit process within the 
system. 

The second assumption is that random failures will occur 
with any unit process based upon its inherent hazard 
function. Hazard functions describe the probability that a 
unit shall fail at any instant in time, given it has not yet 
malfunctioned. Hazard functions can be described by 
any distribution function. Once a unit within the system 
fails it no longer consumes resources or produces 
products. Processes further down the chain may fail to 
receive inputs as a result, depending on the system 
buffering capacity 

Thus, it should be noted that the systems does not 
immediately fail when a service provided by an essential 
unit process is discontinued due to a random failure. 
This is a slight departure from classical reliability 
analysis. Instead, our systems are deemed failed only 
when the state of the system has drifted to an unsafe 
condition. So, for example, if an oxygen generation 
assembly fails, the system is not deemed failed until 
environmental oxygen partial pressures drop below safe 
levels for the crew. This has the effect of slightly 
increasing system life time as compared to classical 
reliability theory. The assumed workable environmental 
states are detailed in EXPERIMENTAL DESIGN 
CONSIDERATIONS section. 

The infrastructure for stochastic performance and 
random failures has been added to the previously 
developed BioSim life support system modeling tool 
(Kortenkamp and Bell, 2003).  

Given this simulation infrastructure we have run a series 
of simulation experiments to demonstrate the 
effectiveness of algorithms utilized. Varying assumptions 
in stochastic performance and failure frequency have 
been selected to demonstrate degrading system 
performance in a simple life support system configured 
to representative of a Lunar Outpost. To demonstrate 
the usefulness of the infrastructure, several maintenance 
schedules will be tested to demonstrate the potential for 
mitigation of off-nominal operational schemes 
necessitated by component failures and system drift. 
The objective of this work is the development of a 
simulation test bed for life testing of integrated closed-
loop life support systems. Work discussed here are 
preliminary results which shall lead to a validating 
experiment where a system with an assumed reliability 
shall be life tested via simulation. Successful 
implementation shall result in finding of assumed 



reliability utilizing typical life testing on the virtual test 
bed designed here.  

INTERFACING WITH BIOSIM 

BioSim uses an Application Programmers Interface (API) 
which enables external program modules to access 
BioSim functionality. The Stochastic Performance Filter, 
the Random Failure Module and the Repair Controller 
are all connected with the existing BioSim to control the 
components performance, to inject failures and to 
manipulate simulation with repair activities during 
discrete time interval.  The API also allows us to use 
generic sensors to monitor the component varying 
inputs/outputs and to record the failure/repair events that 
occur during the simulation. Details describing the 
experiment design are provided in the EXPERIMENTAL 
DESIGN CONSIDERATIONS section.  

MODELING OF STOCHASTIC PERFORMANCE 

Modeling component stochastic performance generally 
refers to creating an understanding of the effect of off-
nominal input and output. To facilitate this, current 
component states are assumed to be independent of 
previous states. This assumption is considered to be a 
Markovian assumption, suggesting memory-less 
components. This assumption is fair with components 
that can be effectively modeled by exponential failure 
time distributions, suggesting constant failure rate. It is 
unclear which life support components would be best 
modeled by exponential distributions, thus this simply 
provides a convenient starting point for analysis. 

Independent states are identified by the discretized 
increment of simulation time, termed tick after the name 
of the algorithm within BioSim which predicts the next 
state of the system based on its current state. One hour 
of simulation time is elapsed with each tick. To simulate 
stochastic system performance, component inputs and 
outputs are passed through virtual filters each tick. This 
adds uncertainties to simulation processes. The filters 
use a Gaussian random number generator to select a 
deviation which is applied to the deterministic process 
model output. The probability distribution for Gaussian 
random variates is, 

2

2

2

)(

2

1
)( !

µ

"!

#
#

=

x

exG  (1) 

A Java function called nextGaussian returns the next 
pseudorandom, Gaussian distributed double value with 
mean µ  and standard deviation ! . The parameter µ  
is set by the deterministic output predicted by BioSim 
process models based on their input. The parameter !  
is set by a user specified intensity value.  

The use of the filter is highly configurable by the analyst 
in BioSim. It can be attached to any component within 
the system simply by editing an XML configuration file. 

Four intensity levels are currently available in BioSim as 
described in Table 1. Currently ongoing work shall add 
the functionality of alternative distribution functions and 
additional unit process specific intensity options. 

Table 1. Stochastic filter intensity values 

 None Low Medium High 
Intensity 
Value 0 0.2 0.4 0.8 

In rigorous analyses, the settings to be used here should 
be based on component experiment data when available 
or expert opinion. In this study, we have selected values 
that actually cause system failures, as our objective is to 
ensure that the algorithms are sound.  

MODELING OF RANDOM FAILURE  

Component random failures are determined by the 
assigned hazard functions implemented in a Random 
Failure Module. Hazard function defines the conditional 
probability that a component will fail. Given that it is 
currently operational. That is, if a component is operation 
at time t, what is the probability it will fail in the interval 
( ttt !+, ). Randomly failed components will cease to 
provide their service. The following distribution functions 
have been added to BioSim: exponential, normal, 
lognormal, uniform, logistic, two-parameter Weibull, 
three-parameter Weibull, and Cauchy. At the beginning 
of each tick, BioSim determines current component state: 
failed or operational. This is done by comparing the 
current hazard rate with a uniformly distributed random 
number between zero and one. If the random number is 
less than the failure rate, the component state is 
switched to Failed and services are no longer rendered 
by that component. Failed components will also stop 
consuming resources. 

Two major hazard functions used in this study are as 
follows. 

The hazard function used for normal model is: 
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For example, given that 450=µ , 50=! , the plot of 
)(xh  is shown in Figure 1.  

The hazard function used for exponential model is: 

!=)(xh  (3) 

If we let 5.0=! , the plot of )(xh  is shown in Figure 2.  



REPAIR AND MAINTENANCE ALGORITHMS 

A set of algorithms are currently under implementation in 
BioSim to simulate the corrective maintenance, or repair 
and preventive maintenance actions that might be 
undertaken by the crew. Three levels of repair and 
maintenance are proposed at this time. The algorithms 
for each are shown as follows. Figure 3 is the flow chart 
representation of level I, II, III corrective maintenance 
algorithms and preventive maintenance algorithm. 

Level I Repair 

1. Malfunctions are diagnosed instantaneously and 
repair actions are taken immediately after a 
component is failed; 

2. One tick, or one hour, will be the time required to 
repair a failed component; 

3. All the repairs are perfect, restoring the component 
to an as-good-as-new condition; 

4. Simultaneous failures are possible. If several 
components, n, fail at the same tick i, or on back-to-
back ticks, for example, i and i+1, they will all be 
restored at the tick number i+2.  
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Figure 1. h(t) plot for Normal Model  
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Figure 2. h(t) plot for Exponential Model  

Level II Repair 

The following conditions are added to Level I Repair 
focusing on repair time. 

5. If more than one component is failed, repair 
activities will be queued in the order which 
malfunctions occur. Priority repairs can be specified 
on a component specific basis by the analyst; 

6. To simulate realistic troubleshooting and repair 
events, a random number is selected from the 
uniform distribution and applied to the repair time. 
The duration of each repair activity will range from 1 
to 24 hours, which is adjustable by editing simulation 
configuration XML file; 

 
Figure 3. In this figure, BLUE, ORANGE and PINK blocks and arrows 
denote Level I, II and III corrective maintenance algorithms, 
respectively. GREEN blocks denote preventive maintenance algorithm 
design. If lower level maintenance is assumed, the algorithm by 
passes higher level block unaltered. 



Level III Repair 

The following conditions are added to Level II Repair 
focusing on the quality of repair. 

7. Imperfect repairs may occur. This has several 
potential implications. Hardware may be restored to 
as-good-as-old or worse-than-old conditions. 
Further, the quality of hazard rate functions may be 
diminished as a result of substandard repair. These 
imperfections can occur in any combination desired 
by the analyst. The quality of repair is depicted 
graphically in Figure 4 with an assumed log-normal 
hazard function. 

 
Preventive Maintenance  

All repair algorithms are modified for periodic preventive 
maintenance simulation. 

8. Rather than waiting for hardware failure, hardware 
can undergo a preventive repair event which 
restores it to as-good-as-new or as-good-as-old, or 
even worse-than-old, as is described in Figure 4. 
Further, hazard rate functions may also be 
diminished, due to faulty repair. These options are 
selected on a component basis by the analyst. 

9. Non-repairable components will be considered.  In 
this case, when a non-repairable component fails, 
the action taken is to replace with a standby, if 
available.  

 

 
Figure 4. Imperfect repair suggests a failed unit can be repaired to as-
good-as-new, as-good-as-old or worse-than-old condition. As is shown 
in this diagram, three different repair events occurred which represent 
as-good-as-new (circle at t=2), worse-than-old (square at t=5) and as-
good-as-old (triangle at t=8) repair conditions. In addition to the 
occurrence of imperfect repairs, it is shown reliability degradation can 
also happen with new hazard functions resulting as demonstrated by 
the dotted line. 

SIMPLIFIED LUNAR OUTPOST 
CONFIGURATION 

A scenario related to upcoming Lunar Outpost is 
selected for the purposes of testing here. The 

configuration is simplified for these purposes of 
validation via future simulation experiments. 
Simplification provides the ability to determine system 
reliability via the classical reliability analysis approaches. 
This system is depicted in Figure 5 where the system 
boundary, the thin black line defines a control volume. 
The crew lives within the volume consuming 
prepackaged food and disposing of solid waste 
overboard. Excess carbon dioxide generated by the 
crew via respiration is removed from the bulk 
atmosphere utilizing a variable carbon dioxide 
concentration and removal system (VCCR) and sent 
overboard. Grey water produced by the crew is collected 
and processed via a wastewater processing system 
(WWP). Potable water is produced by the WWP and 
consumed by the crew and the oxygen generation 
system (OGS). Elemental oxygen and hydrogen are the 
products of the OGS; hydrogen is released overboard 
and oxygen is buffered within the system. An injector 
from the oxygen buffer releases oxygen into the bulk 
atmosphere at a user specified rate. The crew 
consumed oxygen from the bulk atmosphere. A Lunar 
Design Reference Mission prepared by Hanford (2006) 
has been consulted in preparing this scenario. No 
control systems will be incorporated here as to allow the 
system to malfunction, to facilitate the study of reliability. 

 

Figure 5. Configuration utilized during preliminary testing 

Any or all of the components within the system can 
perform deterministically or stochastically. To further 
simplify this analysis it has been assumed that the water 
buffers shall perform deterministically, as they are 
considered to be open vessels. In particular, the OGS 
and the WWP shall have brittle hazard functions, which 
should engender system failures. The crew will also 
have a hazard function, though not as brittle as the 
hardware, representing a life expectancy of 80 years. 
Stochastic performance is also an available option for 
each component. Buffers will not perform stochastically, 
although injectors shall. The Crew, OGS, VCCR and 
WWP shall also perform stochastically. Please refer to 
Table 2 for each unit process within the system 



regarding hazard functions and stochastic performance 
assumptions used in this preliminary study.  

EXPERIMENTAL DESIGN CONSIDERATIONS 

The hypothesis which is to be tested is as follows: 

The enhanced BioSim simulation tool should allow 
prediction of system reliability at least as good as 
those predicted by the classical reliability theories. 

The experimental objectives are to validate the 
usefulness of the simulation infrastructures using the 
simplified Lunar Output configuration. Ultimately, by 
evaluating the impacts brought by the factors simulated 
here, it is anticipated that true system reliability should 
improve through better maintenance and contingency 
planning. In addition, the simulation tool should also be 
useful for defining component reliability requirements, 
given a desired system reliability objective. In performing 
these experiments, it is desired to quantify and interpret 
the potential impact and the deviation of the theoretical 
reliability from experimental reliability. 

Table 2 Simulation Assumptions 

Module Name 
Hazard 

Function and 
Parameters 

Stochastic 
Intensity Level 

OGS Exp(0.0027) Medium 
VCCR Exp(0.001) Medium 

CO2 Store Exp(0.0033) N/A 
O2 Store Exp(0.0033) N/A 
H2 Store Exp(0.0033) N/A 

Crew Normal 
(7*105, 4*104 ) Medium 

Air Injector Exp(0.001) Medium 
Food Store Normal(300, 5) N/A 
Power Store Exp(0.0033) N/A 

WWP Normal(450, 5) Medium 
Waster Water 

Store Exp(0.0033) N/A 

Dirty Water 
Store Exp(0.0033) N/A 

Grey Water 
Store Exp(0.0033) N/A 

 
EXPERIMENT CONTROLS 

Simulation components are classified into two categories: 
storage components and regenerative components. A 
complete list of experimental control variables and the 
settings are shown in Table 3. Default in the table means 
the assumptions are as same as the ones shown in 
Table 2.  

System failure conditions are selected based on crew 
safety and are described in Table 4. 

 

Table 3 Experimental control variables 
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1 None Default Default I 
2 Low Default Default I 
3 Medium Default Default I 
4 High Default Default I 
5 Medium High Low II 
6 Medium Low High II 
7 High High Low III 
8 Low Low High III 
9 High Low High III 

10 Low High Low III 
 

Table 4. System Failure Conditions 
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LIFE TESTING EXPERIMENTAL DESIGNS 

The following describes two life testing approaches 
proposed in this study based on simulated life test data. 

Maximum Likelihood Estimation using uncensored data 

To obtain an estimate for the parameters of a distribution 
based on life testing we define a maximum likelihood 
estimator L  where  
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the failure times are independent the likelihood function 
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This can be linearized to 
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Subsequently, if this function is minimized a maximum 
likelihood estimate results of  
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This theory can be expanded to censored datasets as 
well, where test units are removed from operation prior 
to failure. In this case, the joint probability comprising 
might include reliability functions rather than strictly 
probability density functions. For example, 
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where y~  is the set of all the operational times. The 
vector y~  is comprised of two subsets of failed and 
censored U  and C , respectively. U  is defined by the 
failed unit lifetimes, 

i
t  as before, whereas C  are the 

censored times 
i
c . 

The specific distribution functions can be selected based 
upon prior knowledge or assumption. In our case we can 
run successive BioSim simulations to generate both 
failed and censored data, depending on computational 
requirements. 

Sequential Life Testing 

An alternative life testing approach is to use a sequential 
sampling technique to test the null hypothesis 
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where p  is the reliability the system. The value 
0
p  is 

selected as the lowest acceptable reliability bound. 
Given the definitions for type I and type II errors: let 

!=)|( 01 HHP  and !=)|( 10 HHP , we define a 
likelihood ratio 

R
L  as 

n

n

R
L

L
L

,0

,1
! . 

A sequential testing region can be defined as 
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3. If BLA
R
<<  continue life testing 

 
Specific tolerances for !  and !  will need to be 
specified with alternative values for 

0
H  versus 

1
H . 

This is represented graphically in Figure 5. 

 

Figure 6. Sequential Life Testing Method 

PRELIMINARY RESULTS AND DISCUSSIONS 

Configuration 1 to 4 have been tested using the defined 
experiment control variables. Major experiment results 
include: (1) Component stochastic performance; (2) 
Component random failure and repair time; (3) System 
failure time. Repairable system components are 
quantified using Mean Time Between Failures (MTBF) 
while the system itself is non-repairable and System 
Survival Time is used as a proxy for reliability.  

STOCHASTIC PERFORMANCE 

In the simulation for configuration 1, none of the 
components is assigned with stochastic intensity. Data 
collected show that each of the components was 
operating with deterministic inputs and outputs. 

Figure 7, 8, and 9 illustrate the sampled stochastic 
performance data of OGS Oxygen production rate, from 
configuration 2, 3, 4 defined in Table 3. Each 
configuration has been simulated three times, however, 
the results shown are individual simulations.  



Figure 7. Plot of OGS Oxygen Production Rate using LOW Stochastic 
Intensity  

Figure 8. Plot of OGS Oxygen Production Rate using MEDIUM 
Stochastic Intensity  

Figure 9. Plot of OGS Oxygen Production Rate using HIGH Stochastic 
Intensity 

The figures show that the actual Oxygen outflow rates in 
the simulation are oscillating near the nominal 
production rate which equals to 1000 mol/s. The range 
of the oscillation varies when different intensity values 
are used. Random failure events can also be observed 

when the production rate goes below 700 mol/s, in which 
case the component has zero output. The results clearly 
validate our modeling approach which uses a Gaussian 
random filter to add uncertainty to component outputs.  

RANDOM FAILURE AND REPAIR EVENTS 

Based on the observation of the data collected from one 
of the simulations for configuration 3, where Medium 
Stochastic Intensity is used, components failure events 
are detected and the repair module restores the failed 
component with a fixed time delay of one tick. It is also 
noticeable that when two components fail in two 
consecutive ticks, they are restored to initial state at the 
time that the first failed component should be repaired. 
For example, Table 5 shows a simulation that lasted for 
a total of 997 ticks. The OGS randomly failed at tick 
number 565 and another failure occur later to the 
Portable Water Storage at the 566th tick. A repair event 
thus happened at tick number 567 and restored both of 
the components to as-good-as-new condition. However, 
this design will be improved in the near future by 
introducing the constraint that failed components can not 
be repaired simultaneously. 

Table 5. Components random failure time for 
Configuration 3.  

Component Name Failure 
Number i OGS VCCR Portable 

Water Store 
1 101 153 42 
2 445 204 60 
3 565 324 241 
4 682 423 566 
5 873 639 881 
6 997 852 997 
7  997  

Graphically, a Duane plot is utilized to gain insight into 
the performance of Random Failure Module and Repair 
Controller Module. The time 

i
t  is the globe failure time 

plotted on the horizon axis and )(
i
tN  is the cumulative 

number of failures through time 
i
t . The quantity 

)(/
ii
tNt  is called cumulative MTBF which is plotted on 

the vertical axis in Figure 10, 11, and 12.  

Linear functions are fit into the failure data points to test 
the impact of our repair controller. Three components 
shown here have different slopes. VCCR has roughly 
horizontal lines suggesting the component remained 
stable over the time that the failures were observed and 
cumulatively neither reliability improvement nor 
deterioration occurs. Note that all the repair events are 
designed to restore the failed components to as-good-
as-new condition; a question arises: why does the 
Portable Water Storage unit have such a positive slope 
indicating an improving reliability function while WWP 



has a negative slope indicating a decreasing reliability 
function? It is currently postulated that is due to the 
deterministic performance of the portable water storage 
and WWP. 
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Figure 10. Plot of OGS random failure time versus Cumulative Mean 
Time between Failures 

 
Figure 11. Plot of Portable Water Storage random failure time versus 
Cumulative Mean Time between Failures 

 
Figure 12. Plot of WWP random failure time versus Cumulative Mean 
Time between Failures 

SYSTEM FAILURE 

Current results also show that there is no significant 
impact caused by the choice of stochastic variables 
setting on system survival time, although there is some 

slight decrease with higher intensities. Tests results 
shown in Figure 13 are scaled in a range from 965 to 
1000 ticks. It can be clearly seen that the non-stochastic 
configuration outperformed the others while the rest are 
performing at a very similar level. Such a phenomenon is 
to be explained since the designed optimal input/output 
levels are comparatively high, and the stochastic 
uncertainties added to the unit processes are not large 
enough to reduce the stability of the system. Short repair 
time and large storage buffers may also be the reason 
that leads to the result of having a comparatively 
consistent system survival time. 

In the future, a more sensitive system configuration can 
be designed and the stochastic intensity level can be 
increased so as to bring more significant unstable 
factors into the simulation.  

 
Figure 13. Plot of simulated system survival time for configuration 1, 2, 
3, and 4. Each configuration is tested three times  

CONCLUSION AND FUTURE WORK 

The infrastructure for simulation of a stochastic system 
including system failure and repair has been 
implemented in the previously developed BioSim model. 
This infrastructure has undergone some preliminary 
testing demonstrating baseline functionality.  

To validate this tool, two life testing approaches have 
been developed. The first approach determines a 
maximum likelihood estimator, given an assumed 
probabilistic distribution and either censored or non-
censored data. The alternative approach utilizes the 
likelihood ratio to define bounds upon a testing range 
seeking to minimize type I an type II errors.  

A simplified Lunar Outpost scenario has been proposed. 
Classical reliability techniques should be applied to this 
system. It is anticipated that simulation derived reliability 
shall slightly over analytical predictions due to the 
inherent buffering capacity of the virtual systems. This is 
despite some stochastic engendered drift captured by 
the model. This drift has been shown to vary depending 
on user selected intensity. It has also been shown that 
simulations with high stochastic intensity have shorter 



simulated lifetimes, though whether the difference is 
significant can be debated. In any case, it is anticipated 
that failures due to this drift will be relatively rare, as 
suggested by the Central Limit Theorem.  

System repair has an impact creating increasing and 
decreasing failure rates on average. This effect should 
be considered in the design of future systems, if 
probabilistic distributions characterizing certain hardware 
can be know. 

Eventually with a validated model and proper data 
describing life support hardware, it is anticipated that 
several analyses shall be enabled. Minimum component 
reliabilities may be determined, given a system level 
objective. Maintenance, crew time costs, and 
contingency plans can be considered with their impact 
on reliability. Parametric analyses can also be enabled, 
such as equivalent system mass, mean time between 
failures, mean time to failure, and mean residual life, 
among others.  
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