
07ICES-206

Managing Life Support Systems Using Procedures

David Kortenkamp, R. Peter Bonasso and Debra Schreckenghost
TRACLabs Inc at NASA Johnson Space Center, Houston TX 77058

Copyright © 2007 SAE International

ABSTRACT

International Space Station life support hardware is
controlled mainly from the ground by executing standard
operating procedures. While some on-board software
exists for safety purposes, most commands are sent
from ECLSS ground controllers to achieve mission
objectives. This will prove unwieldy for extended
operations with increasing time delays. This paper
presents a new approach to encoding standard
operating procedures that provides a path to greater
autonomy in life support operations. Software tools will
allow for adjustable automation of procedures from either
the ground or on-board. The Cascade Distiller System
(CDS) being tested at NASA Johnson Space Center is
used as an example system.

INTRODUCTION

Flight controllers and crew members rely on standard
operating procedures to control life support systems.
For space shuttle and space station these procedures
are currently authored in Microsoft Word and manually
executed using system command and control displays.
For station this requires a full-time ECLSS ground
controller interacting with an Atmosphere and
Consumables Engineer (ACE) in the “back room” for
most activities. The procedures are used to calibrate
sensors, check smoke alarms, perform oxygen
replenishments (called represses), and start up and shut
down ECLSS equipment. Procedures are also used to
diagnose malfunctions in ECLSS equipment. While
most procedures can be performed by either ground
controllers or crew members, they are typically
performed on the ground when at all possible. This
requires sending literally thousands of commands per
year from the ground to station ECLSS systems.

We are developing processes and tools that will allow
procedures to be authored and executed in an adjustably
autonomous fashion. Adjustable automation means that
the human may choose at run-time what parts of the
procedure should be executed autonomously and what
parts should be executed manually. An execution
engine manages the interaction between the human and
the underlying system. We have also developed a new

procedure representation language called PRL that
captures the additional information necessary to execute
procedures autonomously.

PROCEDURE REPRESENTATION

Procedures are currently represented in natural
language on a human-readable display (see Figure 1).
They are intended for human consumption not computer
consumption. Thus, the representation does not support
adjustable automation. Telemetry and commanding
information is not encoded in the procedure.

We have been developing a new procedure
representation called the Procedure Representation
Language (PRL). This language keeps the user-friendly
display format of current procedures but augments it with
content-based information (e.g., goals, resources, pre-
conditions, post-conditions, etc.) required for more
autonomous execution. PRL also allows for procedures
to be written in a more modular fashion, with larger
procedures composed of small procedure “fragments'”
that accomplish specific tasks. In this way, new
procedures can be easily created and verified as
hardware configurations change. Our procedure
representation language is an integration of an
automated execution language developed at NASA
called PLEXIL [1] and the existing International Space
Station (ISS) procedure representation. Both of these
representations and our new PRL are schemas written in
the Extensible Markup Language (XML).

STRUCTURE OF A PROCEDURE

The basic structure of a procedure as represented in
PRL is:

Meta data: Includes a unique identifier, the procedure
name, the procedure author, date, etc.

Automation data: Includes the following:

• Start conditions: a boolean expression that when
evaluated to false means that the procedure

should wait until the boolean expression is true
before starting

• Pre-conditions: evaluated after the start
condition and if false then exit the procedure
immediately with failure

• Post-conditions: evaluated after a procedure is
done and if it evaluates to false then the
procedure has failed

• End conditions: evaluated continuously and
when it is true execution of the procedure is
finished

• Invariant conditions: must remain true during the
entire execution of the procedure; otherwise the
procedure fails

• Resources: any resources (time, fuel, crew
members, power, tools, etc.) required for
execution of this procedure

Parameters: Declarations of any data that is passed to
the procedure from whatever is calling the procedure

Local Variables: Declarations of any variables used
internal to the procedure

ExitModes: Definition of explicit procedure exit modes,
specifying procedure success or failure, and giving
optional description of the reason for exiting

ProcTitle: Procedure number and title

InfoStatement: Specifies explanatory information (e.g.
notes, cautions, warnings) that might be needed or
desired by a human executor

Step: A step is the basic organizing structure of a
procedure. A procedure can contain one or more steps
and each step consists of the following parts:

• Automation data: As above except replace the
word “procedure'” with “step'”

• Step title and unique identifier

• Information to be displayed to the user before
this step is executed in manual operations

• A block, which can be ordered (i.e., executed in
sequence) or unordered (i.e., executed in any
order). A block can also consist of an If-Then
statement, a For-Each statement or a While
statement. Inside of a block are:

o Automation data, as above except for
blocks

o Another block allowing for arbitrary
nesting of blocks in a step

o Instructions, which are limited to the
following:

 Command instruction, which sends
an electronic command to the
system being controlled

 Ensure instruction, which checks to
value of a telemetry variable against
a target and, if the value is not
correct then issues a command that
should make it correct

 Input instruction, which assigns
external data (from a crew member,
telemetry, etc.) to a local variable

 Manual instruction, which asks a
human to issue a command

 Physical device instruction, which
asks a crew member to physically
manipulate a device

 Wait instruction, which waits for
either a set period of time or until a
boolean expression evaluates to
true, whichever comes first

 Procedure call, which can be
blocking (i.e., the current procedure
pauses until the called procedure
finishes) or non-blocking (i.e., the
two procedures continue to run in
parallel

 Stop, pause and resume procedure,
which effects the execution of the
current procedure

• The last component of a step is a conditional
branch, which contains a set of boolean
expressions paired with a goto step or exit
procedure command that is executed if the
boolean expression is true. The default is to go
to the next step if no conditional branch is given.

This representation captures the content and intent of
the procedure along with safety rules (or conditions)
under which the procedure and its components are to be
executed.

PROCEDURE EXAMPLE

Figure 1 shows the first step of a multi-step ISS ECLSS
procedure to activate the atmosphere revitalization

system. The procedure is nineteen pages long and is
presented to the human or the crew member exactly as
shown in Figure 1. In Step 1, which is titled “Verifying
Rack Power” the first several lines are instructions on
how to navigate to the correct page of the ISS command
and control displays. Translated, it tells the person
executing the procedure to go to the US Lab page, then
the ECLSS page, then the AR Rack page then look for
the label “LAB AR Rack Overview” on that page, then
find the “Rack Location LAB1D6 – (Entire Rack)” label
and select RPCM LA2B C RPC 01. After selecting that
the user should see a command button labeled “RPC
Position” with the word “Close” in it. They should hit that
button and verify that the telemetry talkback reads ‘Cl’.
Assuming the verify is correct they move on to the next
instruction in the procedure, which is another navigation
through command and control pages and another
command. It is easy to see how, over nineteen pages,
it can get very tedious to enter commands manually and
move your attention between the procedure and the
command and control displays.

SYSTEM REPRESENTATION

Procedures describe the processes by which a device or
system is operated or debugged. They are oriented
towards achieving some task or goal. They do not
describe the device or system. However, a
representation of the system is necessary for procedure
execution. That is, a representation of all of the possible
commands, telemetry, states, state transitions,
connections and taxonomy of the device or system is
required to support procedure authoring and execution.
This representation is different from the procedure
representation described in the previous section.

COMMANDS AND TELEMETRY

The representation of commands and telemetry is
necessary so that the procedure author knows what
atomic elements are available to construct a procedure.

Furthermore, the executive (manual or automated) must
know how to get telemetry from, or send a command to,
the controlled system and in what format. Ideally this
representation of commands and telemetry should come
from the hardware designer or vendor. We have chosen
an industry standard representation called XML
Telemetric and Command Exchange (XTCE)
(http://space.omg.org/xtce/index.htm) for representing
commands and telemetry.

We needed to make significant modifications in how we
used XTCE to accommodate the authoring and
execution of generic procedures. Generic procedures
are those in which the actual device being operated is
not known until the procedure is executed. In that case,
the actual commands and telemetry are not known
either. For example, there might be a procedure to
calibrate a smoke detector, which works for any smoke
detector. When a specific smoke detector is calibrated
the commands and telemetry will need to be linked to
that device. However, when the procedure is written the
commands and telemetry need to be generic for all
smoke detectors. We have extended XTCE to include a
“type” tag that allows for creating generic classes of
devices that all share the same commands and
telemetry.

STATES

The representation of states and state transitions is
necessary so that the procedure author can reference
them in pre-conditions and post-conditions (e.g., don't do
this procedure when the device is in this state) and so
that the executive can check these states when
executing the procedure. The state representation of a
device could come early in its design before the
hardware implementation and before specification of
commands and telemetry. This would allow for early
development and testing of procedures against a state
model of the device. While we could extend XTCE to
add state information, we felt that a separate
representation would be more powerful. We have
chosen State Chart XML (SCXML)
(http://www.w3.org/TR/scxml/) for representing states
and state transitions.

TAXONOMY

A system representation also needs to include the
components of the system and the relationship between
components in some kind of taxonomy. There are two
kinds of relationships we expect to capture. First there is
a hierarchical relationship between spacecraft
components. For example, a spacecraft consists of
many systems -- power, life support, navigation,
propulsion, etc. Each system has many subsystems and
subsystems have components (valves, tanks, switches,
etc.). Hierarchy and containment are important to
represent in order to allow for efficient display and

Figure 1: The first step of an ISS ECLSS procedure

reasoning. The second kind of relationship is
connectivity between spacecraft components. For
example, the output of an oxygen generation system
may be connected to an oxygen storage tank.
Connectivity is important to represent so that situation
awareness displays can be built for humans. We are still
in the process of determining appropriate
representations -- existing standards such as XML
Metadata Interchange (XMI)
(http://www.omg.org/technology/documents/formal/xmi.h
tm) may be appropriate.

PROCEDURE EXECUTION

Procedures can be executed autonomously using an
execution engine, which interprets the procedure
representation and issues commands to the underlying
system. There has been a great deal of research in the
last decade on procedural execution systems, with some
of the more prominent being PRS [2], RAPS [3], and
APEX [4]. The Space Station program also has a
procedural execution system called Timeliner from
Draper Laboratories. While underlying implementation
details may change, all procedural executives have
similar functions: 1) they have a library of applicable
procedures; 2) they choose procedures that are eligible
to run by matching start and pre-conditions with system
states and telemetry in real-time; 3) they decompose
hierarchical procedures into sub-procedures; 4) they
dispatch commands to lower level control processes;
and 5) they monitor for relevant states in the system.

ADJUSTABLE AUTONOMY

Adjustable autonomy allows a procedure to be executed
either by a human, but automation or by both. The goal
is to minimize the need for human interaction while
maximizing the ability for humans to intervene in
procedure execution. Adjustable autonomy must be
addressed from the beginning by identifying what parts
of a procedure (i.e., steps and instructions) might be
executed autonomously and what parts must be
executed by a human. Manual execution is required for
parts of the procedure that have no electronic

commands. It is also required for parts of the procedure
that have no instrumentation to determine if execution
was successful. We have identified three basic levels of
automation for procedures:

• Manual: The command is dispatched or action is
performed by a human with all telemetry
verification done by a human

• Automatic: The command is dispatched
automatically or the telemetry is verified
automatically

• Consent: Command is dispatched automatically,
but only after approval by a human

After identifying and storing in the PRL how different
parts of a procedure could be executed, the end user
interface (see next section) is used to mark whether a
step or instruction should be manual, automatic or
require consent before execution begins. These
assignments must not conflict with the pre-authorized
level of autonomy for a procedure step or instruction. As
the procedure is executed, the execution engine
respects the end user’s desires and guides the end user
through the various manual and consent actions.

PROCEDURE TRACKING

Procedures will continue to be executed manually in
upcoming space missions. There will be actions that
can only be done by a person for physical or operational
reasons. This poses problems for an adjustably
autonomous approach to procedure execution. In a
purely automated approach the executive knows exactly
what is being done and what the status is. However, if
some parts of the procedure are manual, then the
current execution status will need to be inferred from
telemetry or by direct query to the end user. The
procedure tracking process does this inference. It uses
all available data to determine which step of the
procedure is being executed and what the execution
status is. It then makes this available to other processes
such as the executive and the end user display.

GRAPHICAL DISPLAYS AND EDITORS

Humans are an important part of the procedure process.
They will be authoring procedures and they will be
executing or monitoring the automated execution of
procedures.

PROCEDURE DISPLAY

The human executing the procedure will need a display.
Ideally, this display will look similar to the ``paper''
procedures of today, but allow for direct execution of
commands and direct display of telemetry by the end
user. The end user interface will also have to display the
results of procedure tracking by highlighting or otherwise
noting steps that have been completed, steps that are
currently executing, and steps that are pending.
Execution status, especially failures, will need to be
made explicit. Support for adjustable autonomy requires
an easy way to note steps that should be done manually
and steps that should be done automatically.

For a single procedure being done by a single end user
the display requirements are not demanding. However,
if we begin to address multiple procedures being
executed in parallel by one or more end users with
interaction between them, then a wider variety of issues
arise. These include notification of the status of other
end users or executives, interruption reasoning, and
multi-modal notification. For example, a procedure may
have a step that is a wait for some lengthy period of time
(say one hour) at which point an end user could begin
another parallel procedure. At the end of the hour the

end user would need to be notified appropriately, find a
break-point in their new procedure, return to the old
procedure, get situated, and begin executing. In another
example, two end users that are separated by distance
may be performing a single procedure (say an EVA
astronaut and a ground controller) and need to
coordinate their activities. We have begun addressing
these issues in a separate project [5].

Figure 2 shows an end user display we developed for
ISS procedures. Each box represents a step of the
procedure. Steps can branch to other steps based on
their outcome. Different colors represent the status and
level of autonomy of each step. Green steps are
complete. Purple is the current, manual step. At the top
messages for the user are displayed and user input is
requested.

PROCEDURE EDITING

Procedures will need to be authored, viewed, verified,
validated and managed by a variety of people, many of
who will not understand XML or other representations.
We are developing a Procedure Integrated Development
Environment (PRIDE) that will provide an integrated set
of tools for dealing with procedures. These tools will
allow for authoring, verifying, validating and managing
procedures. Authors will be able to graphically design
their procedure using palettes of commands, telemetry
and procedure constructs. Access to desktop system
simulations will be integrated with the PRIDE tool for
verification and validation activities. A workflow system
will also be integrated with PRIDE to track procedure

Figure 2: A graphical end-user display for a procedure

changes and approvals. The PRIDE tool will allow
authors to view the procedure as it will appear to the end
user.

CASE STUDY

NASA Johnson Space Center will be conducting tests in
the spring and summer of 2007 of a new water recovery
system being built by Honeywell. The new system is
called the Cascade Distiller System (CDS). We are
developing procedures for controlling the CDS using the
tools described in this paper. We have expressed the
telemetry and commands of the CDS in an XTCE file.
We have written several CDS procedures in PRL and
also encoded them in an execution engine called RAPS.
The execution engine will execute the procedures
against the CDS hardware in an adjustably autonomous
fashion. PRL allows for easy expression of the basic
CDS operating paradigm. For example, here is a
pseudo-PRL snippet for starting up the CDS (the real
PRL in XML is quite verbose and difficult to understand
without proper editing tools):

Start Procedure CDS Startup

• Pre-conditions: coolant flowing AND vacuum
pressure nominal AND feed tank full

• Step 1: Start Systems

1. Command Instruction: Start distiller water
flowing at 1200RPM

2. Execute Procedure: Apply Vacuum To All
Systems

3. Execute Procedure: Fill Cold Loop With DI
Water

4. Execute Procedure: Fill Hot Loop With Feed
5. Execute Procedure: Start Product Flowing

• Step 2: Wait for System to Start
1. Wait for: Product tank weight increase

End Procedure CDS Startup

The pre-conditions ensure that the system is in the
proper state for startup. The first step has a command
instruction that is issued directly to the hardware. The
other four instructions call additional procedures that do
various parts of the job and return to this procedure
when they are done. For example, the third instruction
calls a procedure to fill the cold loop of the CDS with de-
ionized water. This is done with a procedure that turns a
series of valves. Here is some pseudo-PRL for that
procedure:

 Start Procedure Fill Cold Loop With DI

• Pre-conditions: distiller speed EQ 1200 RPM
• Timeout: 60 seconds

• Step 1: Start DI Water Flowing

1. Execute Procedure: Apply vacuum to distiller
system

2. Command Instruction: Open valve to
product tank

3. Command Instruction: Open DI water valve
4. Wait for: Cold loop filled
5. Command Instruction: Close DI water valve

End Procedure Fill Cold Loop With DI

This procedure has only one step. It has a precondition
that that distiller system be running with a speed of 1200
RPM. The timeout states that this procedure should
finish executing in 60 seconds. If it doesn’t the
procedure aborts with a failure. The first instruction calls
another procedure that applies vacuum to the distiller
system. The next two steps open valves. The fourth
step waits for a signal from the hardware system that the
cold loop is filled. The final step closes the DI valve.

We have identified several dozen procedures that will
control the functioning of the CDS. These procedures
connect via commands and sensors to the underlying
CDS via a hardware interface layer as defined in the
XTCE representation. Execution is done mainly
autonomously using the execution engine, but the level
of autonomy for most steps can be set to manual if
desired. For example, in the previous procedure if Step
1 is set to manual then a human would be responsible
for executing the vacuum procedure and opening and
closing all valves. The execution engine would still verify
pre-conditions to ensure safe operation.

In addition to our work with the CDS we have also
represented several ISS Electrical Power System (EPS)
procedures in PRL. We have then executed those
procedures against a high-fidelity simulation of the ISS
(called ISS-in-a-box) to validate that our approach can

Figure 3: System architecture

help enhance space station operations. Figure 3 shows
the basic system architecture. The system in the lower
right can be the CDS or the ISS (or ISS simulation). The
interface connects the execution engine to the system.
The execution engine executes procedures, which are
authored in PRIDE. The procedure tracker and end-user
display take data from the execution engine and the
system and show the user the current procedure status
and help the user perform manual operations or allow for
consent to be given.

CONCLUSIONS AND FUTURE WORK

Procedures are the means by which any spacecraft
system, including life support systems, are operated.
Current operations are predominantly manual and are
time intensive and error-prone. We are using
simulations and ground testbeds to validate more
automated approaches to controlling spacecraft
systems. These approaches will be necessary as we
develop lunar outposts.
The CDS system will be operated at NASA JSC during
the spring and summer of 2007. We will validate our
control approaches using this system. We are also re-
authoring several existing ISS ECLSS procedures in
PRL and will experiment with adjustable autonomous
execution against a high-fidelity ISS simulation.

ACKNOWLEDGMENTS

This work was conducted under NASA’s Exploration
Technology Development Program’s Spacecraft
Autonomy for Vehicles and Habitats project. The
authors wish to thank their colleagues at NASA Ames
Research Center who participated in discussions
underlyng many of the ideas presented in this paper,
including Ari Jonsson, Vandi Verma and Michael Dalal.
The authors also wish to thank S&K Aerospace

employees Scott Bell, Kevin Kusy, Tod Milam, Arthur
Molin and Mary Beth Hudson who work at NASA JSC
and implemented many of the software processes
described in this paper. The authors also acknowledge
Lui Wang of NASA JSC and Robert Phillips of L3Com at
NASA JSC for helping create the Procedure
Representation Language.

REFERENCES

1. Vandi Verma, Ari Jonsson, Corina Pasareanu, Reid
Simmons and Kan Tso, “Plan Execution Interchange
Language (PLEXIL) for Executable Plans and
Command Sequences,” in Proceedings of the
International Symposium on Artificial Intelligence,
Robotics and Automation (i-SAIRAS), 2005.

2. Michael P. Georgeff and Francois Felix Ingrand,
“Decision-making in an Embedded Reasoning
System,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 1989.

3. R. James Firby, “An Investigation into Reactive
Planning in Complex Domains,” in Proceedings of
the National Conference on Artificial Intelligence,
1987.

4. Michael Freed, “Managing Multiple Tasks in
Complex, Dynamic Environments,” in Proceedings of
the National Conference on Artificial Intelligence,
1998.

5. Debra Schreckenghost, Carroll Thronesbery, R.
Peter Bonasso, David Kortenkamp and Cheryl
Martin, “Intelligent Control of Life Support for Space
Missions,” IEEE Intelligent Systems, 17(5), 2002.

CONTACT

The authors may be contacted through email at
korten@traclabs.com, bonasso@traclabs.com and
ghost@ieee.org

