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ABSTRACT 

International Space Station life support hardware is 
controlled mainly from the ground by executing standard 
operating procedures.  While some on-board software 
exists for safety purposes, most commands are sent 
from ECLSS ground controllers to achieve mission 
objectives.  This will prove unwieldy for extended 
operations with increasing time delays.  This paper 
presents a new approach to encoding standard 
operating procedures that provides a path to greater 
autonomy in life support operations.  Software tools will 
allow for adjustable automation of procedures from either 
the ground or on-board.  The Cascade Distiller System 
(CDS) being tested at NASA Johnson Space Center is 
used as an example system.  

INTRODUCTION 

Flight controllers and crew members rely on standard 
operating procedures to control life support systems.  
For space shuttle and space station these procedures 
are currently authored in Microsoft Word and manually 
executed using system command and control displays.  
For station this requires a full-time ECLSS ground 
controller interacting with an Atmosphere and 
Consumables Engineer (ACE) in the “back room” for 
most activities.  The procedures are used to calibrate 
sensors, check smoke alarms, perform oxygen 
replenishments (called represses), and start up and shut 
down ECLSS equipment.  Procedures are also used to 
diagnose malfunctions in ECLSS equipment.  While 
most procedures can be performed by either ground 
controllers or crew members, they are typically 
performed on the ground when at all possible.  This 
requires sending literally thousands of commands per 
year from the ground to station ECLSS systems.   

We are developing processes and tools that will allow 
procedures to be authored and executed in an adjustably 
autonomous fashion.  Adjustable automation means that 
the human may choose at run-time what parts of the 
procedure should be executed autonomously and what 
parts should be executed manually.  An execution 
engine manages the interaction between the human and 
the underlying system.  We have also developed a new 

procedure representation language called PRL that 
captures the additional information necessary to execute 
procedures autonomously.         

PROCEDURE REPRESENTATION 

Procedures are currently represented in natural 
language on a human-readable display (see Figure 1).  
They are intended for human consumption not computer 
consumption.  Thus, the representation does not support 
adjustable automation. Telemetry and commanding 
information is not encoded in the procedure. 

We have been developing a new procedure 
representation called the Procedure Representation 
Language (PRL).  This language keeps the user-friendly 
display format of current procedures but augments it with 
content-based information (e.g., goals, resources, pre-
conditions, post-conditions, etc.) required for more 
autonomous execution.  PRL also allows for procedures 
to be written in a more modular fashion, with larger 
procedures composed of small procedure “fragments'” 
that accomplish specific tasks.  In this way, new 
procedures can be easily created and verified as 
hardware configurations change.  Our procedure 
representation language is an integration of an 
automated execution language developed at NASA 
called PLEXIL [1] and the existing International Space 
Station (ISS) procedure representation.  Both of these 
representations and our new PRL are schemas written in 
the Extensible Markup Language (XML). 

STRUCTURE OF A PROCEDURE 

The basic structure of a procedure as represented in 
PRL is: 

Meta data: Includes a unique identifier, the procedure 
name, the procedure author, date, etc. 

Automation data: Includes the following: 

• Start conditions: a boolean expression that when 
evaluated to false means that the procedure 



should wait until the boolean expression is true 
before starting 

• Pre-conditions: evaluated after the start 
condition and if false then exit the procedure 
immediately with failure 

• Post-conditions: evaluated after a procedure is 
done and if it evaluates to false then the 
procedure has failed 

• End conditions: evaluated continuously and 
when it is true execution of the procedure is 
finished 

• Invariant conditions: must remain true during the 
entire execution of the procedure; otherwise the 
procedure fails 

• Resources: any resources (time, fuel, crew 
members, power, tools, etc.) required for 
execution of this procedure 

Parameters: Declarations of any data that is passed to 
the procedure from whatever is calling the procedure 

Local Variables: Declarations of any variables used 
internal to the procedure 

ExitModes: Definition of explicit procedure exit modes, 
specifying procedure success or failure, and giving 
optional description of the reason for exiting 

ProcTitle: Procedure number and title 

InfoStatement: Specifies explanatory information (e.g. 
notes, cautions, warnings) that might be needed or 
desired by a human executor 

Step: A step is the basic organizing structure of a 
procedure.  A procedure can contain one or more steps 
and each step consists of the following parts: 

• Automation data: As above except replace the 
word “procedure'” with “step'” 

• Step title and unique identifier 

• Information to be displayed to the user before 
this step is executed in manual operations 

• A block, which can be ordered (i.e., executed in 
sequence) or unordered (i.e., executed in any 
order).  A block can also consist of an If-Then 
statement, a For-Each statement or a While 
statement. Inside of a block are: 

o Automation data, as above except for 
blocks 

o Another block allowing for arbitrary 
nesting of blocks in a step 

o Instructions, which are limited to the 
following: 

 Command instruction, which sends 
an electronic command to the 
system being controlled 

 Ensure instruction, which checks to 
value of a telemetry variable against 
a target and, if the value is not 
correct then issues a command that 
should make it correct 

 Input instruction, which assigns 
external data (from a crew member, 
telemetry, etc.) to a local variable 

 Manual instruction, which asks a 
human to issue a command 

 Physical device instruction, which 
asks a crew member to physically 
manipulate a device 

 Wait instruction, which waits for 
either a set period of time or until a 
boolean expression evaluates to 
true, whichever comes first 

 Procedure call, which can be 
blocking (i.e., the current procedure 
pauses until the called procedure 
finishes) or non-blocking (i.e., the 
two procedures continue to run in 
parallel 

 Stop, pause and resume procedure, 
which effects the execution of the 
current procedure 

• The last component of a step is a conditional 
branch, which contains a set of boolean 
expressions paired with a goto step or exit 
procedure command that is executed if the 
boolean expression is true.  The default is to go 
to the next step if no conditional branch is given.  

This representation captures the content and intent of 
the procedure along with safety rules (or conditions) 
under which the procedure and its components are to be 
executed.    

PROCEDURE EXAMPLE 

Figure 1 shows the first step of a multi-step ISS ECLSS 
procedure to activate the atmosphere revitalization 



system.  The procedure is nineteen pages long and is 
presented to the human or the crew member exactly as 
shown in Figure 1.   In Step 1, which is titled “Verifying 
Rack Power” the first several lines are instructions on 
how to navigate to the correct page of the ISS command 
and control displays.  Translated, it tells the person 
executing the procedure to go to the US Lab page, then 
the ECLSS page, then the AR Rack page then look for 
the label “LAB AR Rack Overview” on that page, then 
find the “Rack Location LAB1D6 – (Entire Rack)” label 
and select RPCM LA2B C RPC 01.  After selecting that 
the user should see a command button labeled “RPC 
Position” with the word “Close” in it.  They should hit that 
button and verify that the telemetry talkback reads ‘Cl’. 
Assuming the verify is correct they move on to the next 
instruction in the procedure, which is another navigation 
through command and control pages and another 
command.     It is easy to see how, over nineteen pages, 
it can get very tedious to enter commands manually and 
move your attention between the procedure and the 
command and control displays.   

SYSTEM REPRESENTATION 

Procedures describe the processes by which a device or 
system is operated or debugged.  They are oriented 
towards achieving some task or goal.  They do not 
describe the device or system.  However, a 
representation of the system is necessary for procedure 
execution.  That is, a representation of all of the possible 
commands, telemetry, states, state transitions, 
connections and taxonomy of the device or system is 
required to support procedure authoring and execution.  
This representation is different from the procedure 
representation described in the previous section. 

COMMANDS AND TELEMETRY 

The representation of commands and telemetry is 
necessary so that the procedure author knows what 
atomic elements are available to construct a procedure.  

Furthermore, the executive (manual or automated) must 
know how to get telemetry from, or send a command to, 
the controlled system and in what format.  Ideally this 
representation of commands and telemetry should come 
from the hardware designer or vendor.  We have chosen 
an industry standard representation called XML 
Telemetric and Command Exchange (XTCE) 
(http://space.omg.org/xtce/index.htm) for representing 
commands and telemetry. 

We needed to make significant modifications in how we 
used XTCE to accommodate the authoring and 
execution of generic procedures.  Generic procedures 
are those in which the actual device being operated is 
not known until the procedure is executed.  In that case, 
the actual commands and telemetry are not known 
either.  For example, there might be a procedure to 
calibrate a smoke detector, which works for any smoke 
detector.  When a specific smoke detector is calibrated 
the commands and telemetry will need to be linked to 
that device.  However, when the procedure is written the 
commands and telemetry need to be generic for all 
smoke detectors.  We have extended XTCE to include a 
“type” tag that allows for creating generic classes of 
devices that all share the same commands and 
telemetry.   

STATES 

The representation of states and state transitions is 
necessary so that the procedure author can reference 
them in pre-conditions and post-conditions (e.g., don't do 
this procedure when the device is in this state) and so 
that the executive can check these states when 
executing the procedure.  The state representation of a 
device could come early in its design before the 
hardware implementation and before specification of 
commands and telemetry.  This would allow for early 
development and testing of procedures against a state 
model of the device.  While we could extend XTCE to 
add state information, we felt that a separate 
representation would be more powerful.  We have 
chosen State Chart XML (SCXML) 
(http://www.w3.org/TR/scxml/) for representing states 
and state transitions. 

TAXONOMY 

A system representation also needs to include the 
components of the system and the relationship between 
components in some kind of taxonomy.  There are two 
kinds of relationships we expect to capture.  First there is 
a hierarchical relationship between spacecraft 
components.  For example, a spacecraft consists of 
many systems -- power, life support, navigation, 
propulsion, etc.  Each system has many subsystems and 
subsystems have components (valves, tanks, switches, 
etc.).  Hierarchy and containment are important to 
represent in order to allow for efficient display and 

 
Figure 1: The first step of an ISS ECLSS procedure 



reasoning.  The second kind of relationship is 
connectivity between spacecraft components.  For 
example, the output of an oxygen generation system 
may be connected to an oxygen storage tank.  
Connectivity is important to represent so that situation 
awareness displays can be built for humans.  We are still 
in the process of determining appropriate 
representations -- existing standards such as XML 
Metadata Interchange (XMI) 
(http://www.omg.org/technology/documents/formal/xmi.h
tm) may be appropriate. 

PROCEDURE EXECUTION 

Procedures can be executed autonomously using an 
execution engine, which interprets the procedure 
representation and issues commands to the underlying 
system.  There has been a great deal of research in the 
last decade on procedural execution systems, with some 
of the more prominent being PRS [2], RAPS [3], and 
APEX [4].  The Space Station program also has a 
procedural execution system called Timeliner from 
Draper Laboratories. While underlying implementation 
details may change, all procedural executives have 
similar functions: 1) they have a library of applicable 
procedures; 2) they choose procedures that are eligible 
to run by matching start and pre-conditions with system 
states and telemetry in real-time; 3) they decompose 
hierarchical procedures into sub-procedures; 4) they 
dispatch commands to lower level control processes; 
and 5) they monitor for relevant states in the system. 

ADJUSTABLE AUTONOMY 

Adjustable autonomy allows a procedure to be executed 
either by a human, but automation or by both.  The goal 
is to minimize the need for human interaction while 
maximizing the ability for humans to intervene in 
procedure execution.  Adjustable autonomy must be 
addressed from the beginning by identifying what parts 
of a procedure (i.e., steps and instructions) might be 
executed autonomously and what parts must be 
executed by a human.  Manual execution is required for 
parts of the procedure that have no electronic 

commands.  It is also required for parts of the procedure 
that have no instrumentation to determine if execution 
was successful.  We have identified three basic levels of 
automation for procedures: 

• Manual: The command is dispatched or action is 
performed by a human with all telemetry 
verification done by a human 

• Automatic:  The command is dispatched 
automatically or the telemetry is verified 
automatically  

• Consent: Command is dispatched automatically, 
but only after approval by a human 

After identifying and storing in the PRL how different 
parts of a procedure could be executed, the end user 
interface (see next section) is used to mark whether a 
step or instruction should be manual, automatic or 
require consent before execution begins.  These 
assignments must not conflict with the pre-authorized 
level of autonomy for a procedure step or instruction.  As 
the procedure is executed, the execution engine 
respects the end user’s desires and guides the end user 
through the various manual and consent actions.   

PROCEDURE TRACKING 

Procedures will continue to be executed manually in 
upcoming space missions.  There will be actions that 
can only be done by a person for physical or operational 
reasons.  This poses problems for an adjustably 
autonomous approach to procedure execution.  In a 
purely automated approach the executive knows exactly 
what is being done and what the status is.  However, if 
some parts of the procedure are manual, then the 
current execution status will need to be inferred from 
telemetry or by direct query to the end user.  The 
procedure tracking process does this inference.  It uses 
all available data to determine which step of the 
procedure is being executed and what the execution 
status is.  It then makes this available to other processes 
such as the executive and the end user display. 



GRAPHICAL DISPLAYS AND EDITORS 

Humans are an important part of the procedure process.   
They will be authoring procedures and they will be 
executing or monitoring the automated execution of 
procedures.  

PROCEDURE DISPLAY 

The human executing the procedure will need a display.  
Ideally, this display will look similar to the ``paper'' 
procedures of today, but allow for direct execution of 
commands and direct display of telemetry by the end 
user.  The end user interface will also have to display the 
results of procedure tracking by highlighting or otherwise 
noting steps that have been completed, steps that are 
currently executing, and steps that are pending.  
Execution status, especially failures, will need to be 
made explicit.  Support for adjustable autonomy requires 
an easy way to note steps that should be done manually 
and steps that should be done automatically. 

For a single procedure being done by a single end user 
the display requirements are not demanding.  However, 
if we begin to address multiple procedures being 
executed in parallel by one or more end users with 
interaction between them, then a wider variety of issues 
arise.  These include notification of the status of other 
end users or executives, interruption reasoning, and 
multi-modal notification.  For example, a procedure may 
have a step that is a wait for some lengthy period of time 
(say one hour) at which point an end user could begin 
another parallel procedure.  At the end of the hour the 

end user would need to be notified appropriately, find a 
break-point in their new procedure, return to the old 
procedure, get situated, and begin executing.  In another 
example, two end users that are separated by distance 
may be performing a single procedure (say an EVA 
astronaut and a ground controller) and need to 
coordinate their activities.  We have begun addressing 
these issues in a separate project [5]. 

Figure 2 shows an end user display we developed for 
ISS procedures.  Each box represents a step of the 
procedure.  Steps can branch to other steps based on 
their outcome.   Different colors represent the status and 
level of autonomy of each step. Green steps are 
complete.  Purple is the current, manual step.  At the top 
messages for the user are displayed and user input is 
requested.   

PROCEDURE EDITING 

Procedures will need to be authored, viewed, verified, 
validated and managed by a variety of people, many of 
who will not understand XML or other representations.  
We are developing a Procedure Integrated Development 
Environment (PRIDE) that will provide an integrated set 
of tools for dealing with procedures.  These tools will 
allow for authoring, verifying, validating and managing 
procedures.  Authors will be able to graphically design 
their procedure using palettes of commands, telemetry 
and procedure constructs.   Access to desktop system 
simulations will be integrated with the PRIDE tool for 
verification and validation activities.  A workflow system 
will also be integrated with PRIDE to track procedure 

 
Figure 2: A graphical end-user display for a procedure 



changes and approvals.  The PRIDE tool will allow 
authors to view the procedure as it will appear to the end 
user. 

CASE STUDY 

NASA Johnson Space Center will be conducting tests in 
the spring and summer of 2007 of a new water recovery 
system being built by Honeywell.  The new system is 
called the Cascade Distiller System (CDS).  We are 
developing procedures for controlling the CDS using the 
tools described in this paper.  We have expressed the 
telemetry and commands of the CDS in an XTCE file.  
We have written several CDS procedures in PRL and 
also encoded them in an execution engine called RAPS.  
The execution engine will execute the procedures 
against the CDS hardware in an adjustably autonomous 
fashion.  PRL allows for easy expression of the basic 
CDS operating paradigm.  For example, here is a 
pseudo-PRL snippet for starting up the CDS (the real 
PRL in XML is quite verbose and difficult to understand 
without proper editing tools): 
 
Start Procedure CDS Startup 
 

• Pre-conditions: coolant flowing AND vacuum 
pressure nominal AND feed tank full 

 
• Step 1: Start Systems 

1. Command Instruction: Start distiller water 
flowing at 1200RPM 

2. Execute Procedure: Apply Vacuum  To All 
Systems 

3. Execute Procedure: Fill Cold Loop With DI 
Water 

4. Execute Procedure: Fill Hot Loop With Feed 
5. Execute Procedure: Start Product Flowing 

• Step 2: Wait for System to Start 
1. Wait for: Product tank weight increase 

 
End Procedure CDS Startup 
 
The pre-conditions ensure that the system is in the 
proper state for startup.  The first step has a command 
instruction that is issued directly to the hardware.  The 
other four instructions call additional procedures that do 
various parts of the job and return to this procedure 
when they are done.  For example, the third instruction 
calls a procedure to fill the cold loop of the CDS with de-
ionized water.  This is done with a procedure that turns a 
series of valves.  Here is some pseudo-PRL for that 
procedure: 
 
 Start Procedure Fill Cold Loop With DI 
 

• Pre-conditions: distiller speed EQ 1200 RPM 
• Timeout: 60 seconds 

 
• Step 1: Start DI Water Flowing 

1. Execute Procedure: Apply vacuum to distiller 
system 

2. Command Instruction: Open valve to 
product tank 

3. Command Instruction: Open DI water valve 
4. Wait for: Cold loop filled 
5. Command Instruction: Close DI water valve 

 
End Procedure Fill Cold Loop With DI 
 
This procedure has only one step.  It has a precondition 
that that distiller system be running with a speed of 1200 
RPM.  The timeout states that this procedure should 
finish executing in 60 seconds.  If it doesn’t the 
procedure aborts with a failure.  The first instruction calls 
another procedure that applies vacuum to the distiller 
system.  The next two steps open valves.  The fourth 
step waits for a signal from the hardware system that the 
cold loop is filled.  The final step closes the DI valve. 
 
We have identified several dozen procedures that will 
control the functioning of the CDS.  These procedures 
connect via commands and sensors to the underlying 
CDS via a hardware interface layer as defined in the 
XTCE representation.  Execution is done mainly 
autonomously using the execution engine, but the level 
of autonomy for most steps can be set to manual if 
desired.  For example, in the previous procedure if Step 
1 is set to manual then a human would be responsible 
for executing the vacuum procedure and opening and 
closing all valves.  The execution engine would still verify 
pre-conditions to ensure safe operation.     
 
In addition to our work with the CDS we have also 
represented several ISS Electrical Power System (EPS) 
procedures in PRL. We have then executed those 
procedures against a high-fidelity simulation of the ISS 
(called ISS-in-a-box) to validate that our approach can 

 
Figure 3: System architecture 



help enhance space station operations.  Figure 3 shows 
the basic system architecture.  The system in the lower 
right can be the CDS or the ISS (or ISS simulation). The 
interface connects the execution engine to the system.  
The execution engine executes procedures, which are 
authored in PRIDE.  The procedure tracker and end-user 
display take data from the execution engine and the 
system and show the user the current procedure status 
and help the user perform manual operations or allow for 
consent to be given.     
 
CONCLUSIONS AND FUTURE WORK  

Procedures are the means by which any spacecraft 
system, including life support systems, are operated.  
Current operations are predominantly manual and are 
time intensive and error-prone.  We are using 
simulations and ground testbeds to validate more 
automated approaches to controlling spacecraft 
systems.  These approaches will be necessary as we 
develop lunar outposts.   
The CDS system will be operated at NASA JSC during 
the spring and summer of 2007.  We will validate our 
control approaches using this system. We are also re-
authoring several existing ISS ECLSS procedures in 
PRL and will experiment with adjustable autonomous 
execution against a high-fidelity ISS simulation.   
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