
07ICES-240  

Testing Heuristic Tools for Life Support System Analysis 

Luis F. Rodríguez, Haibei Jiang 
Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL 61801 

Scott Bell, David Kortenkamp 
NASA-Johnson Space Center, Houston TX 77058 

Copyright © 2007 SAE International

ABSTRACT 

BioSim is a simulation tool which captures many basic 
life support functions in an integrated simulation. 
Conventional analyses can not efficiently consider all 
possible life support system configurations. Heuristic 
approaches are a possible alternative. In an effort to 
demonstrate efficacy, a validating experiment is 
designed to compare the configurational optima 
discovered by heuristic approaches and an analytical 
approach. Thus far, it is clear that a genetic algorithm 
finds reasonable optima, although improved fitness 
function shall be required. Further, despite a tight 
analytical fit to data, optimization produces disparate 
results which will require further validation. 

INTRODUCTION 

NASA has recently redirected their efforts towards the 
development of a new vehicle, in replacement of the 
Space Shuttle. The recent moves are in response to the 
directives of the President towards a 7th Lunar landing 
(Bush 2004). The current suggestion is that Lunar 
exploration will commence by 2020 in preparation for 
Martian exploration. A Lunar Outpost has been 
described at the 2nd Exploration Conference (NASA 
2006). It is likely that several consecutive missions can 
be strung together making total mission length on the 
order of 10 years, or more. Alternating crews would 
regularly travel to and from the outpost on a regular 
basis, possibly every 6 months. Consecutive trips would 
bring crews, resupply materials, and additional habitat 
resources. 

As mission length increases regenerative life support 
systems become preferred to the resupply based 
systems featured on the Space Shuttle and, to a lesser 
extent, on the International Space Station. This suggests 
that the life support system shall rely more heavily on 
local and recycled resources than on terrestrial 
resources. To what extent this will be the case will 
depend on NASA's ability to develop cost effective 
regenerative technology within the current mission time 
frame.  

In any case, as systems become more tightly 
constrained the necessity to understand their reliability 
and robustness becomes critical. Tight constraints are 
inherent in all NASA missions, but long-term human 
missions present special challenges. This is inevitable 
due to the extremely high mission costs, the impacts of 
high profile accidents upon the agency, the limitation of 
abort-to-Earth options available, and the unavoidable 
risks involved in Lunar and Martian exploration. The 
ongoing research described here aims to manage these 
risks to the extent possible. 

The challenges described here involve the study of 
complex, multi-objective, stochastic systems. 
Comprehensive study of the search spaces described by 
these life support systems is infeasible for dynamic, non-
linear simulations and therefore heuristic approaches are 
suggested. These have the advantage of intelligently 
considering the array of potential solutions based on the 
input of the analysts. A genetic algorithm and an 
analytical approach have been implemented for the 
purpose of optimization of a sample life support system. 
An ant colony optimization approach will be implemented 
in the near future. Once this is completed two heuristic 
approaches and an analytical approach will be tested to 
determine whether analogous results can be obtained 
via these alternative approaches. Preliminary results are 
presented here describing progress with the genetic 
algorithms and the analytical approach. 

MISSION SCENARIO 

A simplified life support system has been selected for 
the purpose of testing and validation. The Early Human 
Testing Initiative (EHTI) Phase I (later known as the 
Lunar-Mars Life Support  Testing Project) involved a 
single crew member enclosed within a vacuum pressure 
growth chamber with a tray  of hydroponically  grown 
wheat. The baseline objective of the experiment was to 
demonstrate that  the wheat-human system could be 
utilized to manage the atmospheric quality (Edeen and 
Barta, 1996; Lane, Sauer, and Feeback, 2002). A 
diagram of the basic system modeled here is included in 
Figure 1. 



 

Figure 1. Schematic representation of oxygen and carbon dioxide 
exchange during the test. 

 

Figure 2. Atmospheric constraints on workable system states 

Successful mission operations are limited to areas 
where the models utilized are validated and where 
atmospheric conditions are safe for the crewmember. 
The workable area is show in Figure 2. All simulations 
are allowed to proceed as long as the atmospheric state 
variables remain within the areas shown. The length of a 
simulated mission is the key in determining the quality of 
a configuration. This process is described further in the 
section entitled Multi-objective Utility Function Design. 

BIOSIM - AN INTEGRATED LIFE SUPPORT 
SIMULATION 

Over the past several years NASA has been developing 
an integrated life support system simulation [5].  The 
simulation was developed in accordance with NASA 
requirements and baseline assumptions for the design of 
an ALS [6,7]. The simulation includes detailed, 

stochastic models of the crew, air, water, biomass 
(including plant growth chambers), power, food 
production and solid waste recycling.  Each of these 
components interconnects with the rest of the simulation 
as shown in Figure 3. The simulation can be configured 
to simulate a wide variety of different life support 
systems.  This includes number, gender and ages of 
crew members, the size of the habitat environments, 
atmospheric pressure, capacities of tanks, initial levels of 
consumables, processing capacity of life support 
modules and many other variables.  The simulation has 
sensors and actuators that connect to various 
controllable elements and allow for real-time control.  
Sensors read simulation values and can inject sensor 
errors.  Actuators set flow rates of resources between 
simulation components.   

 

Figure 3. Typical BioSim configuration 

CONFIGURATION DESCRIPTION 

Five configurations, summarized in Table 1, related to 
the original EHTI experiment have been designed for the 
purpose of this study. For the most part, each 
configuration progressively creates a more challenging 
optimization problem, primarily due to the additional 
combinations considered with the addition of new 
decision variables.  

In all configurations, a crop is sown on the initial 
simulation day. This crop is allowed to establish itself 
prior to the arrival of the crew member. During this time 
a rudimentary on/off control system is utilized to maintain 
carbon dioxide and oxygen partial pressures and total 
atmospheric pressure. Additional control variables are 
thus involved which becomes our interest to discover the 
optimal. All variables are summarized in Table 2.  

Table 1. Configurations under consideration 
 Decision Variables 

Config. Area Crop  Mix Vol. Control Arrival 

O2 Concentrator 

CO2 CO2 
 

O2 Breathing Air  

SAWD II 

 
Crop Photosynthesis 

O2 CO2 

GROWTH CHAMBER 
 

 
Respiration 

O2 CO2 

AIRLOCK 



Time 
1 *    * * 
2 * *   * * 
3   *  * * 
4 *  *  * * 
5 *  * * * * 

The crew arrival time is limited by the harvest date of the 
crops available, enforcing that they shall be present 
during harvest. The underlying assumption is that 
automation will be available for sowing crop, but not for 
harvesting. For optimization purposes, the arrival time of 
the crew and several set point values related to the 
control system are selected in each configuration 
studied. 

Starred items in Table 1 demonstrate the decision 
variables included in each optimization study. For 
example, in the first configuration, a fixed volume of 
32,000 liters is maintained and in addition to the control 
variables included in each configuration, the optimization 
techniques are asked to identify an optimal area of 
wheat crop.  

In configuration 2, the additional complication is the 
selection of an optimal in addition to the area. Nine crop 
options are available within BioSim: dry bean, lettuce, 
rice, soybean, sweet potato, tomato, wheat, and white 
potato.  Configuration 3, progresses from here selecting 
a mixture of crops, with a fixed area of 14 m2. Similarly, 
configuration 4 considers total crop area as well as the 
crop mix. Finally, configuration 5 considers the system 
volume. 

Table 2 lists the discretized ranges considered by the 
optimization tools. These ranges have been selected to 
allow the optimization tools latitude to find novel 
solutions, which may not have been immediately obvious 
to the analysts. Each range is discretized by the variable 
type utilized. Thus, integer variables are selected from 
whole numbers within the range, whereas double 
variables are divided up to the 16th decimal place 
depending on the range and the amount of digits (of 16 
total) appearing before the decimal place. 

EXPERIMENTAL DESIGN CONSIDERATIONS 

The objective is to determine whether heuristic 
approaches identify optima which are as good as, better, 
or worse than those derived from analytical approaches. 
It is critical to consider the experimental factors that 
need to be controlled to ensure the results are 
comparable. These factors include things like the total 
number of configurations searched or the range of 
search spaces. The following section discusses each 
factor and the corresponding rationale. 

Table 2. Decision variables under 
consideration 

Attribute Range Variable 

Type 

Crop Area 0-200 m2 Double 

CO2 Level 1 
Time 

0-100 hr Integer 

CO2 Level 2  
Time 

100-300 hr Integer 

CO2 Level 3  
Time 

300-500 hr Integer 

CO2 Level 1, 2, 
3 Set Point 

0.01-0.1 
kPa 

Double 

CO2 1, 2, 3,  
Total Pressure 
Low Rate 

0-2 moles/s Double 

CO2 1, 2, 3, 
Total Pressure 
High Rate 

0-1 moles/s Double 

O2 Set Point 20-30 kPa  

O2 Low Rate 0-10 moles/s  
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O2 High Rate 90-100 
moles/s 

 

Crew Arrival  
Time 

0-504 hr Integer 

Crops n/a Species 

Volume 20-500 m3 Double 

 
TOTAL NUMBER OF CONFIGURATIONS SEARCHED 

The ideal condition is to provide each optimization 
method with an equivalent opportunity to observe 
BioSim performance. Based on observation of the 
simulation results and the consideration of computational 
efficiency, the number is set to be 5000. That is, unless 
the optimization tool successfully locates the optimal 
using less than 5000 configurations, the operator will 
terminate the search automatically after the 5000th trial. 

OPERATOR CONTROLLED SEARCH LENGTH 

With some heuristic techniques, the operator identifies 
the simulation end conditions. This is offered as opposed 
the maximum number of simulations considered. 
Operator skill at managing the search and identifying 
true optima is at question here. 

ORIGINS OF SEARCHES 



The origin of search may have great impact upon 
heuristic search performance especially when the path 
to the optimal is critical. It is also important for some 
regression procedures.  

PSEUDO RANDOM NUMBER GENERATORS AND 
INITIAL SEEDS 

Random number generators only approximate truly 
random numbers. Multiple pseudo-random number 
generators can be tested to determine the impact of this 
effect. Further, typically the seed utilized in those 
number generators is the system clock. The effect of the 
initial seed can also be considered. 
 
DISCRETIZATION OF ATTRIBUTES 

Attributes are discretized by using different variable 
types, such as Double and Integer. It might be possible 
that a search algorithm can inherently benefit from such 
a design, and alternative variable types shall be 
considered.  
 
MULTI-OBJECTIVE UTILITY FUNCTION DESIGN 

A significant challenge in the experiment design is the 
design of an appropriate fitness function. It needs to be 
well rounded and capable of balancing the defined 
objectives, including:  

1) Maximizing crew survival length, which is 
regarded as a proxy for system reliability; 

2) Minimizing crop area; space is at a premium 
within the Lunar or Martian mission and crop 
production is a major ESM burden;  

3) Minimizing crew arrival time, which will directly 
affect mission length, cost, and complexity. Such 
a design will also reduce the challenge of 
designing a completely autonomous crop 
production system; 

4) Minimizing total system volume, which consists 
of a fixed Airlock volume (20 m3) [2]; and the 
volume of the crop growth chamber, which is 
decided dynamically by the product of total crop 
area and growth chamber’s height. Based on the 
design by Fortson, Castillo, and Barta [8], the 
height is uniformly distributed between the 
minimal feasible height (0.8 m) to the maximum 
height (2.4 m) suggested by Edeen and Barta 
[2].  

 
A fuzzy membership function approach has been 
proposed to manage these objectives, they are equally 
judged on a 10-point scale.   
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where 
T
T  is the mission length, measured in hours, 

simulation time; 
C
T  is the crew arrival time; 

S
T which 

equals to 
CT
TT ! indicates the actual mission length 

after the crew arrives; 
T
A is the total crop area; 

T
V  is 

the total system volume. 

And the overall utility function thus becomes 
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where 
T

! , 
A

! , 
C

! , 
V

!  are correspondingly the 
weight of each contribution factor. In the currently 
experiment, the weight values are all set to be one 
suggesting each term carries equal weight. The utility 
function is a unit-less measure of configuration 
performance and the relationship between the factors 
are illustrated using Figure 4, 5, 6, and 7 respectively.  



 

Figure 4. Crew Survival Time vs. Utility Contribution 

 

Figure 5. Total Crop Area vs. Utility Contribution 

 

Figure 6. Crew Arrival Time vs. Utility Contribution 

 

Figure 7. Total Volume vs. Utility Contribution 

OPTIMIZATION APPROACHES 

GENETIC ALGORITHM 

Genetic algorithm is a computational heuristic algorithm 
based on the theory of natural selection, utilized for 
solving optimization problems. Genes encode inputs into 
the problem being optimized; in this case they represent 
life support configurations. The quality of each gene is 
judged by the selected fitness function. Natural Selection 
is simulated with the initialization of a population 
selected randomly and then selecting the best 
performing configurations and using these as the seeds 
for the next generation via simulated genetic crossover, 
mutation repetitively.  

In our validation experiment, a genetic algorithm was 
integrated by using an existing open source Java genetic 
algorithm package JGAP[9] with BioSim simulation 
program. In the simplest configuration, there are 19 
genes, while the most complex one will have 38. The 
population size has been selected to be five, with a 
mutation rate of fifteen.    

JGAP also provides a user friendly package JGrid that 
allows distributed parallel computing which leverages 
additional computational efficiency. JGrid was 
implemented using four DELL workstations to simulate 
these configurations. Each workstation serves as a 
Worker, while one of them is also responsible for feeding 
the simulation problem as the Server, distributing work 
load over the network and compiling gathered results.  

ANALYTICAL APPROACH 

To validate the results obtained from heuristic approach, 
an analytical approach was developed here. BioSim 
performance and its relation to the utility function is 
converted to a nonlinear model, and thus enables classic 
nonlinear programming techniques to locate the optimal 
solution.  

Randomly generated configurations are executed by the 
simulation tool which outputs the corresponding mission 
length information. Uniform random numbers are 
selected over for each attribute over the ranges specified 
in Table 2. A total number of 5000 configurations are 
tested as in the heuristic approaches.  

SAS PROC NLIN procedure is a powerful tool which 
enables fitting these data into a nonlinear model. Various 
tests have been considered for goodness of fit for 
different nonlinear forms. Polynomial and exponential 
forms are very flexible in fitting the shape of many types 
of data. SAS PROC NLIN calculates the initial residual 
sum of squares for a predefined array of starting values 
and initiates the iterative regression with the best set. 
The objective of the iterations is the maximization of the 
2
R  quality of fit statistically. Variable selection is 
another key step towards finding a reasonable model. 
There are forwardselect, backwardselect and stepselect 
options available within SAS for the regression 
procedure, where a basic p-test is used to determine the 
importance of each attribute and add/eliminate the 



important/unimportant ones from the null/full model.  
The best fit is identified by comparing residual sum of 
squares, residual plot and the residual normal quartile 
plot. 

A Matlab optimization function, called fmincon, is used 
here to perform the minimization of the fitted nonlinear 
model as an objective function. Maximization is achieved 
by supplying the routines with -F(x). All of the constraints 
existing in our problems are inequalities defined by the 
attribute bounds. Independent M-files are coded to 
describe the objective function and the constraints for 
each configuration.   

ANT COLONY OPTIMIZATION 

Ant Colony Optimization is another heuristic optimization 
algorithm mimicking the foraging behaviour of ant 
colonies. In nature, ants initially walk randomly from their 
nest to search for food. When a path to food is found, 
they return to their nest leaving pheromone trails on the 
ground for other ants. These pheromone trails increase 
the odds that other ants will follow the same path to the 
food. As other ants follow the trail, they too drop 
pheromone reinforcing the path. Given time, the trail 
gradually evaporates reducing its attractiveness to ants. 
Therefore a short trail is more attractive than a longer 
trail, as the pheromone trail is refreshed as there is less 
time between the nest and the food. Furthermore, the 
evaporation causes the ants to explore for food rather 
than simply following previous paths. 

Instead of looking for food, our synthetic ants are looking 
for the optimal configuration of BioSim. Our space is 
discretized into 2 dimensions, X  being the attribute 
index, Y  being the attribute value. For example, if 
attribute #3 is crop size and its value is constrained from 
0 to 200, a possible point in space is (3,140). Each point 
has a pheromone value associated with it. Our synthetic 
ants start by picking a random value for attribute 1, then 
for attribute 2, etc. This creates a path through the space 
and a configuration for BioSim. This configuration is then 
simulated in BioSim. As an example of the process, let’s 
say we’d like to optimize 4 variables in BioSim:  

1. amount of water (0-500 litres) 

2. amount of food (0-150 kg),  

3. size of the habitat (10-1000 m2) 

4. number of crew (1-4) 

An ant selects the following path: (1, 89) (2, 123) (3, 
721) (4, 2). This path can be translated into a BioSim 
configuration by setting the water to 89 litres, the food to 
123 kg, the habitat to 721 m2, and adding 2 crew 
members. This configuration runs for 1200 hours. This 
translates into a certain amount of pheromone that the 
ant then deposits on each point on each point back to its 
starting point. A longer simulation run means the ant will 
drop more pheromone on the same way back to its 

starting point. This process continues for this ant and 
other ants in parallel until convergence to a near-optimal 
solution. 

PRELIMINARY RESULTS AND DISCUSSION 

Genetic algorithm analysis results for configurations one 
and two are currently available and are pictured in 
Figure 9 and Figure 10, found in the APPENDIX. The 
horizontal on both figures is the currently simulated trial, 
a total of 5,000 as specified previously. On the vertical is 
the utility for each corresponding simulation instance, 
depicted by the points within the chart. The thick line at 
the top depicts the currently simulated best 
configuration. The thick line within the scatter is the 
running average of utility. Figure 9 and Figure 10 are 
prototypical GA output generated dynamically as an 
optimization is running. 

Configuration one finds an optima of 20 after roughly 
1,200 trials. In configuration one, three aspects are 
considered within the fitness function each with a 
maximum value of 10: crew survival time, crew arrival 
date, and crop area. An output of 20 is a strong 
suggestion that the GA has found that sacrificing on one 
aspect of the fitness function, while favoring the 
remaining two will provide benefits. However, the actual 
result may not be grounded in reasonable truths. In fact 
this is the case: crop area selected was approximately 
181 m2, arrival time was 37 hours, and crew survival 
time was 25,000 hours, the maximum. These are each 
rewarded by the fuzzy fitness functions as 0.97, 9.2, and 
10, respectively.  

To combat this, a revised fitness function, with respect to 
crew survival has been proposed and shall be utilized in 
future analyses. This function is as follows and is 
depicted graphically in Figure 8: The originally proposed 
fitness function was selected to provide proxy for high 
reliability, but it seems the previous form was excessive. 
Noting the two slopes prior to 336=

S
T shows that 

rewards will be great for long simulations, but 
progressively worse as survival times get large for this 
scenario. 
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Figure 8. Newly proposed Crew Survival Time vs. Utility Contribution 

Despite the challenges with the fitness function, there is 
no doubt that the GA is finding optima within the search 
space. Configuration one seems to have converged after 
roughly 1,200 trials. Configuration two seems to have 
converged after 2,500 trials onto a configuration 
effectively identical to that of configuration one: crop 
area of 189 m2, crew arrival date of 27 hours, and total 
simulation length of 25,000 hours, and a crop type of 
wheat—the same as in configuration one. This provides 
some validation to the results in configuration one. It is 
reasonable as well that wheat was the selected crop in 
configuration two as this is the most photosynthetically 
active crop per unit area considered. 

With the random scatter of simulated instances in both 
Figure 9 and Figure 10, it is very likely that the entire 
search space was effectively considered in both cases. 
However, the additional complication of enforcing the 
genetic algorithm select the optimal crop slightly more 
than doubles the period of time required to find an 
optima. This is an encouraging result as there is an 
effective nine-fold increase in the total volume of the 
search space. 

The quality of fit for the analytical approach is shown in 
Figure 11, Figure 12, and Figure 13. A residual plot is 
shown in Figure 11, Figure 12 is a residual probability 
plot, and Figure 13 is a plot showing predicted data from 
the model with actual data from the BioSim simulations. 
Although non-linear approaches were the initial focus, a 
linear model has been fit with highest precision to the 
data and has been selected for this analysis. (For brevity, 
this full model has not been shown here.) 

Optimization of the linear model, however, did not 
produce the anticipated results. An optima of 798 was 
found, which certainly does not fall within the range of 0-
30 specified by the fuzzy fitness function. This is odd 
considering all data utilized for fitting had utility of 20 or 
less. The optimal configuration parameters are: crop 
area of 200 m2, a crew arrival time of 504 hours, and dry 
bean as the selected crop. (Remaining attributes are not 
listed for brevity.) As of yet this result is not fully 
explained by our analyses and futher work is required. 
Clearly, with such large area and crew arrival time it is 
impossible for the fitness to be much larget than ten 
despite a long simulation length. Current suggestions for 

discrepency relate to the fact that all attributes listed in 
Table 2 are incorporated into the analytical model, rather 
than focusing principal components. However, by 
reducing the model to any principal components, it will 
be, at best, a challenging iterative problem to identify the 
truly optimal configuration from the remaining partial 
information. In any case, it is clear that further validation 
of any analytical model will be required for use later. 

Interestingly, by simply scanning the raw data produced 
randomly during the data generation phase shows 
optima similar to those identified by the GA. This furher 
supports the assertion that the GA effectively considered 
the entire search space. However, it may suggest that 
the additional overhead of implementing the GA is not 
necessary, provided enough computaional power, and 
time, is available to take the brute force approach to 
finding an optima. Effectively each run of 5,000 
simulations consumed all resources from a Dell 
Precision 380 machine for approximately five hours time. 
JGrid, though available, have not yet been utlilzed in this 
work, but this lab may find an effective three-fold drop in 
processing time, with three such machines. High 
performance cluster and supercomputing options have 
been considered for this work as well, though few a 
capable of implementing applications requiring the Java 
Virtual Machine, as in the case of BioSim. 

CONCLUSIONS AND FUTURE WORK 

The paper summarizes the progress made on the 
validation of heuristic search techniques. An experiment 
comparing the results from our heuristic search tool and 
an analytical optimization method was conducted 
considering the design of a simplified closed-loop life 
support system. Thus far, indicators suggest that with a 
careful design of a multi-objective utility function, a GA 
can find reasonable optima. However, analytical 
approaches require further validation, and possibly 
iterative solutions.  

Both approaches locate a number of solutions that are 
reasonably workable according to mission objectives 
due to the ability to effectively consider the entire search 
space.  

Current results suggest that improvements remain in the 
development of the fitness function. Several remaining 
issues, such as, the censoring of simulation length, the 
number of configurations tested, and the weight for each 
term in the utility function are being discussed for future 
implementation.  

New research opportunities have been identified as this 
work continues. The genetic algorithm results and the 
fitted model both show that the workable results are 
possibly clustered at several tiers of utility. It may 
potentially be beneficial to mission designers if an 
understanding of the characteristics of these simulations 
which cluster around utility tiers. Regarding further 
development of the utility function, adding weight to each 
term has been proposed. This may lead to better 



optimization performance and improved comparability 
between the approaches. For example, the notion of 
ESM could easily be introduced to the weights. 
Regarding the analytical approach, other nonlinear and 
linear models will need to be tested using the proposed 
approach to determine if improving the goodness of fit is 
possible. And finally, the optima selected analytically 
should be tested for its performance in BioSim for 
validation. 
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APPENDIX 

 

Figure 9. Genetic algorithm output for configuration one 

 

Figure 10. Genetic algorithm results for configuration two 



 

Figure 11. Residual plot of fit of analyitical model 

 

Figure 12. Residual probability plot 



 

Figure 13. Analytical model output compared to actual data 


