
09ICES-0239 

Data Abstraction Architecture for Monitoring and Control of 
Lunar Habitats 

Scott Bell and David Kortenkamp 
TRACLabs Inc, Houston TX 77058 

Jack Zaientz 
Soar Technologies Inc., Ann Arbor MI 8105 

 

Copyright © 2009 SAE International 

ABSTRACT 

A Lunar habitat will be highly sensored and generate 
large amounts of data or telemetry.  For this data to be 
useful to humans monitoring these systems and to 
automated algorithms controlling these systems it will 
need to be converted into more abstract data.  This 
abstracted data will reflect the trends, states and 
characteristics of the systems and their environments.  
Currently this data abstraction process is manual and ad 
hoc. We are developing a Data Abstraction Architecture 
(DAA) that allows engineers to design software 
processes that iteratively convert habitat data into higher 
and higher levels of abstraction.  The DAA is a series of 
mathematical or logical transformations of telemetry data 
to provide appropriate inputs from a hardware system to 
a hardware system controller, system engineer, or crew. 
The DAA also formalizes the relationships between data 
and control and the relationships between the data 
themselves. We have connected our Data Abstraction 
Architecture to a simulation of a Lunar habitat in order to 
test its ability to aid in the monitoring and control 
functions. 

INTRODUCTION 

Space systems are growing more and more complicated 
and containing more and more sensors.  The large 
amount of data generated is overwhelming both ground 
controllers and automated control systems.  Coping with 
this sensor data will require developing software 
systems that can iteratively convert raw sensor data into 
more meaningful, derived data that can be used by 
controllers, both human and automated.  In this paper 
we describe a data abstraction architecture that allows 
engineers to design software processes that convert 
habitat data into higher levels of abstraction.  First, we 
present the architecture including its components and 
representations.  Then we present some use cases in 

which the architecture is used to monitor and control a 
Lunar habitat.  We then describe our experimental 
environment including a Lunar habitat simulation and 
discuss the performance of the data abstraction 
architecture in implementing the use cases.  Next we 
talk about related work in this area.  Finally, we discuss 
future directions and conclusions.    

DATA ABSTRACTION ARCHITECTURE 

A data abstraction architecture (DAA) formalizes the 
relationship between raw telemetry and derived data.  A 
set of integrated components and representations are 
part of the DAA, including: 
 

• Data events define the data (both raw and 
derived) upon which the architecture operates.  
Data events can be generated by hardware or 
software and happen asynchronously.  

• Data abstractors, which are software programs 
that perform a transformation on data events.  
They consume certain kinds of data events and 
produce different data events.   

• Sensor event abstraction language (SEAL), 
which is an eXtensible Markup Language  (XML) 
schema that defines a grammar  for connecting 
data abstractors, events, sources and sinks. 

• Data abstraction reasoning engine (DARE), 
which instantiates a SEAL file into a computer 
program that connects to data sources and data 
sinks to perform abstractions. 

• Development environment, which is an end-user 
software tool to aid in the construction, 
debugging and viewing of SEAL files. 

 



Together these components provide a mechanism for 
creating more abstract data from raw telemetry.  Each of 
them will be discussed in the rest of this section.     
 
DATA EVENTS 

Data events define the data upon which the DAA 
operates.  Events are heterogeneous, hierarchical, multi-
values message and may occur asynchronously.   They 
can be generated from sensors, controllers or from data 
abstractors.  These generators are called data sources.  
Data events are not simply a number, but instead are 
complicated data structures that can contain attributes 
such as confidence, timing, processing history, counts 
and  arrays.  Here is an example data event for a Lunar 
habitat scenario 

  { 
    sensors: [ 
    { 
      name: cabin pressure sensor, 
      units: kPA, 
      value: 101 
    } 
    { 
        name: airlock pressure sensor, 
        units: kPA, 
        value: 85 
    } 
    average: 93 
  }     
 
In this case the data event contains two sensed values, 
their units and their average.  This would be produced 
from an averaging data abstractor.   

DATA ABSTRACTORS 

Data abstractors transform data events by performing 
processing on them.   There is no limit to the number or 
kinds of data abstractors that can be built.  Each data 
abstractor is implemented in a common programming 
language such as Java.  The abstractor must conform to 
an Application Programmers Interface (API) that allows it 
to receive and generated data events and to be 
controlled.  We have implemented the following kinds of 
data abstractors: 

• Reducing 

o Average:  Collects a series of values 
and produces their average (choice of 
mean or median) 

o Min/Max: Collects a series of values and 
produces their minimum or maximum 
value 

• Timing 

o Temporal Alignment: Ouputs a single 
new data event containing a set of 
events that are all temporally common.  

o Sampling:  Accumulates a buffer of 
discrete events over a defined 
observation period and produces a 
single data event.   

• Symbol Processing 

o Categorical Binner:  Reduce real value 
data events into symbol categories.  For 
example, a temperature input could be 
reduced to “high”, “medium” or “low”. 

• Propogation 

o Propogate on Change:  Only generates 
an output data event when the input 
data event has a different value from the 
previous event 

o Quiescence:  Only generates a data 
event when the input data event has 
remained constant for a set period of 
time. 

• Mathematical and Logical 

o Basic mathematical and logical 
operations 

Several of these will be described in the use cases 
presented later in the paper.  

SENSOR EVENT ABSTRACTION LANGUAGE 

The Sensor Event Abstraction Language (SEAL) is an 
XML grammar that defines data abstraction networks.  It 
encodes the data abstractors and their parameters, the 
data events, the data sources and sinks and the 
connections between all of them.  It also defines the data 
events. The SEAL syntax and semantics are intended to 
support the computational requirements of NASA 
telemetry and telemetry management processes and 
align to the conceptual model of those processes held by 
expert NASA flight control engineers. The language is 
intended to support rapid visual development and 
inspection of data transformation by skilled engineers 
who are typically trained in disciplines other than 
software engineering.  

DATA ABSTRACTION REASONING ENGINE 

The Data Abstraction Reasoning Engine or DARE, is a 
distributed, message-based software program that takes 
as input a SEAL file, instantiates the listed abstractors, 
connects the abstractors to each other, the sources, and 



the sinks. When DARE is finished initializing, data 
sources are producing events from live data, abstractors 
are computing on those generated events, and sinks are 
consuming the resultant events. 

EDITING AND DEBUGGING SEAL 

The SEAL visual editing environment has been 
developed in Eclipse, a Java open source editing 
platform and provides the expected basic functionality 
including drag and drop placement of abstractors, 
automatic routing of message-path lines, local save and 
load and static validation of SEAL expressions, 
connection with the DARE engine for run-time debugging 
including remote start and stop, variable-watches, and 
breakpoints. To support NASA telemetry applications, 
the editor natively supports the XML Telemetric and 
Command Exchange (XTCE) standard descriptions and 
identifiers for telemetry data sources. 

USE CASES 

We examined two separate use cases for the data 
abstraction architecture. Both use cases receive sensor 
data from a simulated Lunar habitat.  In order to 
understand the use cases we first describe the simulated 
lunar habitat. 

 

Figure 1: The BioSim habitat simulation 

BIOSIM 

The Lunar habitat ECLSS simulation is based on BioSim 
models developed over the past several years [4]. 
BioSim is a discrete-event simulation of a space habitat 
that models each of the life support components as 
processes that consume certain resources and produce 
other resources.  For example, the air revitalization 
system model consumes air with a specific concentration 
of gases (e.g., high in CO2 and low in O2) and power and 
produces air with a different mixture of gases (e.g., low 
in CO2 and high in O2).  

A simulated crew module is implemented using models 
described by [3].  The number, gender, age and weight 
of the crew are changeable.  The crew cycles through 
activities such as sleep, maintenance, recreation, etc.  
During each activity they consume different levels of O2 
food and water and produce CO2, dirty water and solid 
waste. The crew module is connected to a crew 
environment that contains an mixture of gases (an 
atmosphere) that they breathe.  The initial size and gas 
composition (percentages of O2, CO2, H2, O2 and inert 
gases) are input parameters.  As the simulation 
progresses the composition of gases in the atmosphere 
changes.  
 
For this work, BioSIm was configured to contain a main 
crew cabin with a volume of 27 meters cubed and a 
connected airlock with a volume of 10 meters cubed.  
There are three controllers for the airlock.  One controller 
pulls air out of the airlock and deposits it into the main 
crew cabin.   Another controller puts air into the airlock 
from the main cabin.  A third controller puts oxygen into 
the airlock from an oxygen store.   Figure 1 shows the 
habitat simulation with a main cabin and an airlock 
(which is greyed out when at vacuum).    
 

 
Figure 2: A data abstraction network for detecting a 

sensor failure 
 
CARBON  DIOXIDE SENSOR MONITORING 

In the first use case, we created an abstraction network 
to monitor five sensors that measured the carbon dioxide 
in the crew cabin. Nominally, the sensors should all be 
reporting the same value (aside from a bit of noise). 
However, we planned to fail one sensor and have a DAA 



detect and report the failing sensor immediately. The 
network we created is shown in Figure 2. 

First, each carbon dioxide sensor is sampled to 1Hz. 
This means each Sampler abstractor is generating one 
event every 1 second. These Sampler events are all 
consumed by the Temporal Alignment abstractor. This 
abstractor was configured to collect the Sampler events 
until one event from each Sampler had arrived. When 
this happens, a new event was published by Temporal 
Alignment containing the list of events from each 
Sampler. The Outliers abstractor would process this list, 
looking at each sensor reading for an anomalous sensor 
reading. If one is found, it is added to a list of outliers. If 
not, an empty list is passed. The Outliers fires a new 
message as soon as it's able to process its input. Count 
takes the event from Outliers and determines the length 
of the outliers list in its input event. Count fires a new 
event as soon as its able to determine this, which is sent 
to the Propagate On Change abstractor. If the count 
value in the message has changed, a new event is sent 
to the display. If not, Propagate On Change discards the 
event. 

HABITAT AIRLOCK CONTROL 

For the second use case, we created an abstraction 
network that was used by a high-level controller to 
manage an airlock for an EVA. The controller uses 
DARE to signal it when high-level goals have been 
accomplished. 

A data abstraction network was built to determine the 
airlock state by sampling the total airlock pressure and 
the partial pressure of oxygen.  The airlock could be in 
one of several states: 

• NORMAL: Airlock pressure and oxygen levels 
are the same as the crew cabin 

• PREBREATHE: Airlock has a higher oxygen 
level 

• VACUUM: Airlock has a very low pressure 

• HIGH: Airlock has higher pressure than the crew 
cabin 

• LOW: Airlock has a lower pressure than the 
crew cabin 

• UNKNOWN: Airlock is not in one of the above 
states (usually because it is transitioning) 

  Several categorical binners are used to output a 
symbolic state.  A quiescence abstractor was used to 
ensure that the system was in a stable state before the 
high-level controller took another action.  The high-level 
controller adjusted actuators in BioSim to accomplish 

goals and used outputs from DARE for state estimation.  
The data abstraction network for this use case is shown 
in Figure 3. 

 

 

Figure 3: A data abstraction network for determining the 
airlock state 

The high level controller executed a procedure written in 
the Procedure Representation Language (PRL), which is 
being used by NASA for the next generation of 
procedures for human space flight [5]. The procedure 
was as follows: 



• Get airlockʼs total pressure and oxygen level to 
NORMAL 

• Get the oxygen level in the airlock to 
PREBREATHE 

• Wait three hours 

• Reduce the total pressure to VACUUM 

In the use case, a human controller started execution of 
the procedure, which commanded the airlock controllers.  
The data abstraction architecture provided the high-level 
controller with state information. 

Figure 4 shows a run of this use case.  The pressure 
starts out low and is raised first to NORMAL, then to 
PREBREATHE, then held there for three hours and then 
the pressure is dropped to VACUUM.  Each colored 
vertical line is the data abstraction network generating a 
new state for the airlock.       

RELATED WORK 

NASA flight controllers currently use an ad hoc 
“computations” or “comps” system to convert low-level 
telemetry into higher-level data.  Comps are limited to 
single values and must be programmed by computer 
experts.  NASA flight controllers also have a number of 
tools by which they can match telemetry against limits 
and show trends.  These tools are difficult to change and 

limited to running on flight controllerʼs computers only. 
Several autonomous control architectures had explicit 
data abstraction.  One clear example is the 
Supervenience architecture [7].  The architecture 
consisted of communicating levels in which lower levels 
pass data about the world to higher levels.  At the same 
time higher levels pass goals down to lower levels.  It is 
implemented using a blackboard architecture at each 
level.  Each level also contains its own uniform data 
representation. The Reactive Action Packages System 
(RAPS) [1] had its own data abstraction component that 
was added in the early 90s [6].  This functioned more as 
a conceptual network in which data could be represented 
at many levels.  It was primarily used as a way to 
communicate with humans.  RAPS also led to a pattern 
recognition architecture called the Complex Event 
Recognition Architecture (CERA) [2].  It was primarily 
concerned with expressing parsers that would recognize 
complex patterns in streams of data.  In neither of these 
cases could novice programmers create data 
abstractions.      
 

FUTURE WORK  

We are continuing to develop the data abstraction 
architecture.  We are implementing an ability to create 
composite abstractors.  That is, allowing for the creation 
of abstractors of abstractors.  This will make it 
significantly easier to build complicated abstraction 
networks.   

 
Figure 4: The output from the airlock state data abstraction network 

 



 
We are exploring uses of the data abstraction 
architecture in NASA's Mission Control Center (MCC).  
The current method of doing data abstraction in mission 
operations is to write special software called 
“computations” (or “comps'”) that take in a few values of 
raw telemetry and create a new telemetry value that is 
added to the telemetry stream.  Comps are not an ideal 
solution for several reasons.  First, they require software 
programming skills on the part of the operator (or 
reliance upon software programmers).  Second, there is 
often a significant delay between recognizing the need 
for a comp and its instantiation.  Finally, comps only 
convert numeric values into other numeric values and 
only occur at the lowest level of the data stream. This 
last drawback prevents the creation of higher and higher 
levels of data abstraction that all feed one another.  Our 
approach improves the process by allowing “comps” to 
be built and evaluated on-the-fly and in a formal manner.   
 
CONCLUSIONS 

We have designed and implemented a prototype data 
abstraction architecture and used it in several simple 
scenarios.  The data abstraction architecture and its 
associated SEAL grammar formalizes the transformation 
of data from raw sensory telemetry to higher-level data.  
Such abstractions are critical in monitoring and 
controlling complicated space systems.  By 
standardizing the representations and processes  we are 
creating a toolkit that engineers can use to build data 
abstractions.  Initial conversations with NASA flight 
controllers and control engineers has revealed a growing 
need for architectures such as the one presented in this 
paper. 
 
ACKNOWLEDGMENTS 

Several programmers at Soar Technologies were 
involved in the creation of the data abstraction 
architecture, including Kyle Aaron and Dave Ray.  
Jeremy Frank of NASA Ames Research Center provided 
significant insight into data abstraction architecture.  
Alan Crocker and Brian OʼHagan of NASA Johnson 
Space Centerʼs Mission Operations Directorate provided 
insight into current mission operations and the 

requirements for data abstraction.  This work is funded 
under a NASA Ames Research Center Small Business 
Innovation Research Grant.  David Alfano of NASA 
Ames Research Center is the SBIR COTR.     

REFERENCES 

1. R. James Firby, “An Investigation into Reactive 
Planning in Complex Domains,” in Proceedings of 
the National Conference on Artificial Intelligence, 
1987. 

2. Fitzgerald, W., R. J. Firby, A. Phillips, and J. Kairys, 
“Complex Event Pattern Recognition for Long-Term 
System Monitoring,” Proceedings of the AAAI 2003 
Spring Symposium on Human Interaction with 
Autonomous Systems in Complex Environments, 
(available from AAAI Press at www.aaai.org), 2003.  

3. Goudarzi, Sara and K.C. Ting, “Top Level Modeling 
of the Crew Component of ALSS, in Proceedings of 
the International Conference on Environmental 
Systems (ICES), Society of Automotive Engineers 
(SAE), 1999. 

4. Kortenkamp, D., and Bell, S., “Simulating Advanced 
Life Support Systems for Integrated Controls 
Research,” in Proceedings of the 33rd International 
Conference on Environmental Systems (ICES), 
Society of Automotive Engineers (SAE), 2003. 

5. Kortenkamp, D., R. Peter Bonasso and Debra 
Schreckenghost,  “Managing Life Support Systems 
Using Procedures” in Proceedings of the 37th 
International Conference on Environmental Systems 
(ICES), Society of Automotive Engineers (SAE), 
2007. 

6. Martin, C. E. and R. J. Firby, “Generating Natural 
Language Expectations from a Reactive Execution 
System,” Proceedings of the 13th Cognitive Society 
Conference, 1991.   

7. Spector, L. and J. Hendler, “Planning and Reacting 
across Supervenient Levels of Representation,” 
International Journal of Intelligent and Cooperative 
Information Systems, Vol. 1, No. 3, 1992. 

 

CONTACT 

The authors may be contacted through email at 
scott@traclabs.com.

 


