

A Suite of Tools for Debugging Distributed Autonomous Systems

David Kortenkamp1, Reid Simmons2, Tod Milam1, and Joaquín L. Fernández2

1Metrica Inc./TRACLabs 2Computer Science Dept. Carnegie Mellon University

1012 Hercules
Houston, TX USA 77058

{korten, tmilam}@traclabs.com

5000 Forbes Avenue
Pittsburgh, PA 15214 USA

{reids, joaquin}@cs.cmu.edu

ABSTRACT
This paper describes a set of tools that allows a

developer to instrument an autonomous control system to
log data at run-time and then analyze that data to verify
correct program behavior. Analysis is done using a new
interval logic that allows system engineers to express
complex, temporal specifications to be checked against the
logged data of the autonomous control program. A feature
of both the logging and analysis is that they can work with
distributed programs. All data is synchronized into a
common database. The data logging tools and the interval
logic are fully implemented. Results are given from a
NASA distributed autonomous control system application.

1. INTRODUCTION

The cumbersome process of monitoring and displaying
system data, analyzing this data for anomalies and
collecting the data for future analysis is typically done
using application-specific code written by developers as
they code their systems. Traditional software debugging
tools are not designed for distributed autonomous systems,
these tools often run only on single processes, and cannot
integrate data across processes. The tools described in this
paper allow for real-time collection, display, and analysis
of data from distributed autonomous systems.

Debugging and verifying distributed control programs
is notoriously difficult [Tsai 1996], yet such programs are
becoming increasingly common in complex applications.
Examples are spacecraft control [Muscettola et al 1998],
process control [Bonasso 2001], multiple robot applications
[Simmons et al 2000] and production plant control
[Kresbach and Musliner 1998]. In each of these instances,
concurrent programs run (often on separate machines) to
generate control commands for a single or multiple devices.

The difficulty in debugging such applications is
directly related to their distributed nature. When a problem
occurs it can often be difficult to isolate the problem to one
specific control module due to timing constraints,
interprocess communication, and synchronization. The
traditional, dynamic method for debugging sequential
software has no timing constraints. For these systems,
cyclic debugging (running the program until an error shows
up, examining the program state, inserting assertions and
re-executing the program to obtain additional information)
is commonly used [Tsai et al 1996]. However, there are

several reasons why this approach cannot be applied to
distributed control programs:

• Often the distributed processes cannot be paused
for examination since they are controlling physical
hardware.

• There is no central, global state or even global
clock to reference state values, which makes it
difficult to reason about the “state” of the system
at a given time.

• Due to latencies and timing issues, distributed
control programs are inherently non-deterministic
and non-repeatable.

Moreover, the questions posed by developers of
distributed autonomous control systems about their systems
often differ significantly from those posed of traditional,
linear control programs. Analysis of cross-system data is
of particular importance, including questions such as:

• Do two states in two control programs change
together? What is the latency between a change in
one and a change in the other?

• When event X occurs in one system, how long
before event Y occurs in a second system?

This paper presents a suite of data collection tools and

a real-time interval logic that is used to analyze data
collected by the tools. The data collection tools and logic
work together via a database to facilitate debugging and
verifying distributed programs. The real-time interval logic
is used to determine if the execution of a real-time
distributed program, as characterized by a captured
execution trace, is consistent with a formal description of
the program behavior. The logic includes mechanisms to
deal with metric time, powerful interval and event
specification mechanisms, and different ways to deal with
sets of intervals and events. We illustrate the use of our
tools by applying them to validate part of an autonomous
control system for NASA’s Advanced Water Recovery
System [Bonasso 2001].

2. PREVIOUS WORK

Stethoscope, a commercial product for collecting data
from real-time programs, allows for data collection,
display, and modification [Schneider 1995]. However, it is
limited to real-time programs running under VxWorks and
does not offer support for the kind of high-level, cross-

system debugging that distributed systems require.
Tools for debugging and verifying parallel systems

have recently been developed. For example, ParaGraph
[Heath & Etheridge 1991] provides a variety of
visualizations of a parallel system. Similarly, tnfview is a
tool for debugging and verifying multi-threaded programs
[Kleiman et al 1996]. None of these tools, however, offer
the cross-system and high-level debugging and verification
support needed for debugging autonomous systems.

As for analyzing data, a temporal logic is a good
candidate for expressing specifications to verify execution
trace data, since it can specify properties of event and state
sequences. However, traditional linear-time temporal logic,
such as PTL [Gabbay 1980] and ITL [Moszkowski 1986],
or branching-time logic, such as CTL [Emerson 1982],
cannot specify the quantitative aspect of time. These logics
deal with concepts of eventuality, fairness, etc., which are
basically qualitative treatments of time. While we can use
such logics for specifications such as “Every stimulus p is
followed by a reaction q” (�(p→◊q)), it is not possible to
express “Every event p is followed by a reaction q in the
next 4 time units.”

Researchers have investigated different methods to
overcome this shortcoming [Tsai 1996]. One is the use of
explicit clock variables, such as a global clock, that binds a
variable to the corresponding time when an event occurs. In
particular, this approach is used in TPTL [Alur 1990] and
XCTL [Harel 1990]. Another approach, exemplified by
Metric TL [Koymans 1990], is to use bounded temporal
operators to restrict the time span between two events. A
third approach uses time functions, as is done in RTL
[Jahanian 1987].

Most of these logics were designed for model checking
and they restrict their language to be able to apply
verification methods. However, other logics such as Event-
based Real-time Logic (ERL) [Chen 1991] and Real-time
Interval Logic (RTIL) [Razouk 1989] were developed to
yield practical tools for software testers running the system
and checking the specifications over the trace data.

3. INTERVAL TEMPORAL CHECKING LOGIC

While temporal logics typically provide good low-level
mechanisms for expressing sequencing behavior, using
them to reasoning about an entire computation is often
awkward and convoluted. Coupled with our desire to
facilitate the expression of complex timing and relational
properties of real-time distributed software, we created our
own logic, based on RTL, ERL and RTIL. ITCAL (Interval
Temporal Checking Logic) includes new operators to
handle sets of intervals and events, introduces new
structures such as value sets, and extends others, such as
time points, already used in RTIL. From RTL we borrow
operators such as universal (∀) and existential (∃)
quantifiers, while from ERL we borrow some functionality
to work with events.

Due to the focus on checking and debugging, ITCL is

based on actions and system status that are defined as
intervals. Reasoning about intervals allows us to easily
define timing and relational properties of real-time
distributed systems, such as periodic behavior or temporal
constraints.

An event ω is defined as a log entry in the logged data.
Log entries record relevant changes to the system,
including the beginning and end of significant actions,
changes to state variables, and perceived changes in the
environment. The information recorded for each log entry
contains the event name, a timestamp, and a set of variables
associated with the kind of log entry. Events can also be
defined as a log entry type (rather than a single log entry
instance). An event defined in this way can have several
occurrences in the trace file. We use the term “event set”
(represented as Ω) to denote all of them.

We define a time point set (Φ) as a set of time points
(φ) in the trace interval. A time point set can correspond
with an event set or can be derived from it. For example, it
is possible to define a time point set as the set of all the
time points corresponding to the events “start_actionA”
(which is an event set). However, we can also define a new
time point set as all time points 5 seconds before the
“start_actionA” events. The time point set defined this way
is not an event set.

Intervals (γ) are defined as a pair of time points (φ1.1
start and φ2.1 end) delimiting the start and end of the
interval. Usually, the two time points are events. The first
time point is included in the interval and the second is not.
Therefore, the starting and ending time points must be
different. The whole trace itself is also considered to be an
interval. As with events and time points, intervals can be
grouped into interval sets.

Specifications to be checked against a trace file can be
defined and evaluated with respect to either intervals or
interval sets. The specifications consist of propositions or
logical expressions defined according to ITCL.
3.1 ITCL syntax

Time points are the basic building blocks of ITCL.
Time points are defined formally as:

φ ≡ |↑γ | ↓γ | φ→t | t ← φ | t | ω,
where γ is an interval, t is a time value and ω is an event
(log entry). The operators ↑ and ↓ appearing before an
interval represent the beginning and ending of the interval.
The expressions φ→t and t←φ represent the time points t
time units after φ and t time units before φ respectively.

The formal definition of an interval is as follows:
γ: = φ1 ⇒ T2 ⇒ T1 … | … T2 ⇐ T1 ⇐φ1 | ⊥,

where T is a time point φ or a time point set Φ. The search
operators (⇒,⇐) extend the interval from a starting time
point searching forward (⇒) or backward (⇐) to an ending
time point. Multiple search operators can be included in the
same interval definition, but they all must have the same
direction. If no time point is specified, searching starts
from the beginning (⇒ Φ2) or end (φ2.1 ⇐) of the logged

data. Thus, ⇒ represents the interval including the whole
execution trace. ⊥ is used to represent the null interval, i.e.,
there is no interval for which the definition holds. Since the
search operators (⇒, ⇐) always start searching right after
the starting time point, intervals defined this way always
have duration greater than zero.

Time point sets have a similar definition to time points
and are defined as:

Φ ≡ Ω|↑Γ | ↓Γ | Φ→t | t←Φ | [x∈ Φ st P],
where Ω is an event set as defined above, and the operators
↑ and ↓ appearing before an interval set (Γ) represent the
beginning and ending time points of the intervals that
belong to Γ. The expression [x∈ Φ st P] denotes a new
time point set that includes all the time points from the set
Φ that are consistent with the condition P. The condition
that can be used depends on the type of time point set. For
example, if the time point set is a value set, P can be a
formula that imposes a restriction on the values.

The formal definition of an interval set is as follows:
Γ: = [γ] | [P] | Φ1 ⇒ T2 ⇒ T5 ⇒ … | …⇐T1⇐Φ2 |
 [x∈Γ st P]| I ∪ I | I ∩ I | I & I | I  I

where P is a condition or logical expression, T is a time
point φ or a time point set Φ, and I is an interval γ or an
interval set Γ. An interval in brackets ([γ]) is an operator
that converts the interval γ into an interval set that contains
only one interval (γ). The next section presents some
examples of how to define interval sets from a condition
[P], using the search operators (⇒, ⇐) and conditional
interval sets ([x∈Γ st P]). Some examples are shown in
Figure 1.

ITCL includes operators that combine intervals and
interval sets in various ways. Figure 2 shows some
examples of these operators, including union (∪),
subtraction (∩), disjunction (|) and logical and (&).
Their semantics are described in Section 3.2.

Specifications are formed from logical expressions (P)
joined by the Boolean operators and (∧), or (∨) and
implies (→). These expressions can also have the not (¬)
operator preceding them. Logical expressions (P) are either
relational expressions or temporal relations. Universal (∀)
and existential (∃) quantifiers can be used to evaluate an
expression over a set of items (events, intervals or values).

Relational expressions (<, ≤, >, ≥, =, ≠) can also be
used with a value set. The result is an interval set consisting
of the intervals where the expression holds true. For
example, in Figure 1, the expression [m8.s>10] returns an
interval set that represents all occurrences of message m8
where the S field has a value greater than 10.

ITCL contains several time-related operators. The time
operator returns the timestamp of an event. The duration
operator returns either the duration of an interval or a value
set containing the durations of all intervals within an
interval set. The temporal operator always (γ ⊗ P) is true if
P is true during all the minimal intervals within γ. ITCL
also defines the eventually operator (γ ◊ P), which is
equivalent to ¬(γ ⊗¬P). Table 1 shows the more
commonly used operators. Note that ITCL also includes
arithmetic (+, -, *, /), logical (¬, ∧, ∨), and relational (=, ≠,
<, ≤, >, ≥) operators.

Table 1. Symbol equivalence

ITCL Short description
∀ For all
∃ Exists
∈ Belongs to
⇒ Search forward
⇐ Search backward
→ Extend forward
← Extend backward
∪ Union of two interval sets
∩ Subtraction of interval sets
↑ Beginning an interval
↓ Ending an interval
∆ Evaluate at the beginning
∇ Evaluate at the end
β Evaluate after
α Evaluate before
⊗ Always
◊ Eventually
⊥ Null interval
st Restricts

time φ Timestamp of time point φ
|Γ/Φ| Cardinality of the set

Miscellaneous symbols
≡ Assignation

=> implies: {a=>b} ↔ {!a ||b}
Print Print item or set of items

MAX_TRACE Timestamp of last event
MIN_TRACE Timestamp of first event
Maxvalue(v) Maximum value of value set v
Minvalue(v) Minimum value of value set v

event type m8 with variable S = 1

m8{S=15} m2 m8{S=1} m8{S=15} m8{S=8} m8{S=1} m8{S=8}

Γ1(γ1.1)

↑Γ1 ↓Γ1 m2.

Γ1(γ1.2)

↑Γ1 ↓Γ1
t

φ2.1

Φ1 ≡ [x ∈ m8.s st x==1]
Φ2 ≡↓Γ1 →t
Γ1 ≡ [m8.s > 10]

φ1.1 φ1.2

Figure 1. Time point sets and interval sets.

Figure 2. Operations with intervals.

Γ1, Γ3
Γ5 Γ1, Γ3

⇒
φ2.1 φ3.1 φ4.1 φ1.2 φ8.1 φ2.2 φ1.3 φ3.3 φ1.1

Γ1, Γ3

φ3.2

Γ2, Γ3, Γ4

Γ6

Γ6

Γ1 ≡ Φ1 ⇒ Φ2
Γ2 ≡ [x : Φ1 ⇒ Φ3 st x include φ8.1]
Γ3 ≡ Γ1 ∪ Γ2

Γ4 ≡ (Φ3 ⇒ Φ4) ∪ Γ2
Γ5 ≡ ⇒ ∩ Γ3
Γ6 ≡ ⇒ ∩ Φ3 ⇒ Φ4

3.2 Writing Specifications using ITCL
The main design goal for ITCL is to provide a general

and flexible language with which to specify the execution
of autonomous systems. ITCL is well suited for this.
Execution is typically characterized by the occurrence of
events, changes to state variables, and continuity of values
over time. ITCL’s focus on sets of events, values, and
intervals maps well to this.

Typically, however, a user is confronted with different
ways to specify desired actions and states that depend on
the information available in the log data. For example,
consider the task of specifying all the intervals during
which the robot performs a “rotate” action. If we log the
events when the robot starts rotating (start_rot) and stops
rotating (end_rot), we can use the search operator to define
“rotate”:

rotate = start_rot ⇒ end_rot.
However, if the log data contains information about when
the rotational speed of the robot (rot_speed) changes (the
event change_val), the same “rotate” action can be defined
as:

rotate = [change_val.rot_speed > ε],
where ε can be either zero or a threshold over which we
consider the robot to be rotating. Note that, in either case,
the result is an interval set, which corresponds to the idea
that the robot could execute the “rotate” action many times
during a single run of the system.

Operations that combine interval sets (I1 ∪ I2, I1 ∩ I2,
I1 & I2, I1  I2) can be used to succinctly specify more
complex types of constraints. For example, to specify
“condition P must hold after executing action A1, A2, or
A3” we can use the union and evaluate after operators:

(A1 ∪ A2 ∪ A3) β P,
this works because the union operator creates a new
interval set that includes all the intervals of its arguments.

Similarly, we often want to specify that some condition
will never occur unless the system is in a particular state.
For example, we might want to specify that “P must never
hold unless the system is executing action A1.” In this
case, we can use the subtraction operator to find all the
intervals where A1 is not occurring, and specify that P
should never hold during those intervals:

([⇒] ∩ A1) ⊗ ¬P
While ITCL is very general, sometimes the

specifications are not very readable. Based on our
experience with ITCL, we are adding higher-level
constructs (“syntactic sugar”) to make it easier to specify
expressions that appear frequently. Table 2 shows some of
the extensions, together with their expansions, in ITCL.

4. DATA COLLECTION

 The data collection demands of distributed control
programs range from low-level sensory data to the

programs’ internal states. The data collection routines have
the following requirements:

Table 2. ICTL extensions to allow easier use
MACRO EQUIVALENCE

γ1 intersects γ2 time(↑γ1) < time(↓γ2) ∧
time(↓γ1) > time(↑γ2)

γ1 include φ time(↑γ1) ≤ time(φ) ∧
time(↓γ1) > time(φ)

γ1 include γ2 time(↑γ1) ≤ time(↑γ2) ∧
time(↓γ1) ≥ time(↓γ2)

γ1 inside γ2 time(↑γ1) ≥ time(↑γ2) ∧
time(↓γ1) ≤ time(↓γ2)

φ inside γ2 time(↑γ2) ≤ time(φ) ∧
time(↓γ2) > time(φ)

φ1 isbefore [T1, T2] φ2 time(φ1) + T1 ≤ time(φ2) ∧
time(φ1) + T2 ≥ time(φ2)

φ1 isbefore (T1, T2] φ2 time(φ1) + T1 < time(φ2) ∧
time(φ1) + T2 ≥ time(φ2)

φ1 isbefore [T1, T2) φ2 time(φ1) + T1 ≤ time(φ2) ∧
time(φ1) + T2 > time(φ2)

φ1 isbefore (T1, T2) φ2 time(φ1) + T1 < time(φ2) ∧
time(φ1) + T2 > time(φ2)

closeto(v, co, ε) v < (co + ε) ∧ v > (co - ε)

• Data collection in real time
• Data logging to a database
• Grouping of data into logical sets
• Triggering options (e.g., allowing only certain

data in certain ranges to be collected)
• Change-only logging

Our goal for data collection is to replicate the ease-of-

use of the printf command in C, while allowing for more
control and for distributed operation. In essence, what we
have implemented is a remote printf capability named rlog.

Rlog is a set of libraries that allows users to easily
instrument their programs and send the output to a variety
of destinations, such as the screen, a file, a remote
computer, or a database. The types of data that can be
logged are similar to that of printf: character, unsigned
character, short integer, unsigned short, integer, unsigned
integer, long integer, unsigned long, floating point, double
floating point, and character string.

We have implemented a variety of logging functions,
ranging from logging a single variable, to logging multiple
variables at once, to conditional and change-only logging.
In addition, rlog includes a pre-processor that enables
function entries and exits to be logged automatically.
Logged values can be directed at run-time to a variety of
output destinations, including the screen, a file, a remote
computer, or an SQL relational database. It is the database
feature that allows for multiple processes to be logged to a
single location. All of the analysis tools described in
Section 3 get their data from the database. Figure 3 shows
the general system set-up.

Distributed logging to a central database works as
follows: A socket connection is made between each process
being logged and a central data collection process. The
central data collection process communicates with the other
processes to determine clock offsets for each of them. It
then uses this clock offset to synchronize all the event times
for each logged datum. Once times are synchronized, the
data is entered into the relational database.

We have collected performance data on our logging
tools. The data was collected on an 800Mhz Intel Pentium
III running RedHat Linux 6.2. Table 3 shows the number
of seconds it took to call the basic rlog function 100 times
for different output possibilities. The results are an average
for all the different data types that can be logged, plus any
associated initialization and clean up. Note that the first
line of the table (NULL) is where the logging functions are
invoked, but do not actually output any data.

Null 0.009
File 0.053
Screen 0.534
TCP/IP socket 0.711
SQL database 0.347
Table 3. Time in seconds for invoking the logging functions 100

times for different output locations

5. EXPERIMENTS

We validated our approach by collecting data from a
test of the NASA Advanced Water Recovery System
(AWRS). The AWRS is an automated system being
developed to support astronauts on very long duration
missions, by recycling all water [Bonasso 2001]. Our
interest was to verify that the control system was actually
performing according to specifications.

We first gathered several day’s worth of data from the
control system using the data collection tools described in

Section 4. This data was logged to a database. It was then
analyzed using rules written in ITCL. This section details
the results of those experiments, together with some
examples of the specifications used and the reports
obtained.

For this test, we used an event (ChangedValue) to
report whenever some variable of interest in the controller
process changed. Most of the variables correspond to
sensors that report temperature, dew point, flow, etc.

Based on this data, we translated specifications that
were provided (in English) by the WRS engineers. One
such constraint is the following:

"Whenever BlowerPower is greater than 0 then
FlowMeter07 must also be greater than 0"

We translate this into ITCL as follows:
[ChangedValue.BlowerPower > 0] ⊗

(ChangedValue.FlowMeter07 > 0) 1
It is important to note that this is not the only way to
express this notion. We can also use:

∀ itvl ∈[ChangedValue.BlowerPower > 0]
(ChangedValue.FlowMeter07 > 0)

Expressions that include fixed time, such as periodic
behaviors or events that occur before or after some action,
result in very simple ITCL expressions using the start (↑),
end (↓) and extending-in-time (←, →) operators. One of
the most complex timing situations is that a sequential set
of events should happen when the system is under some
specific conditions. Once again, the WRS engineers
provided us with the following English specification:

“When Switch3State and Switch1State both change to
1 then the following should happen in this order:
1. FlowMeter08 should go to a little over 7.
2. FlowMeter07 should go to a little over 7.
3. Thermocouple29 should go above 100.
It is possible for these to occur roughly simultaneously,
but they should never occur in a different order.”

To express this constraint in ITCL, we first define some
auxiliary variables:
s1s3on ≡ [(ChangedValue.Switch3State = 1) ∧

(ChangedValue.Switch1State = 1)];
sfm8overThresh ≡ ↑([ChangedValue.FlowMeter07 >7]);
sfm7overThresh ≡ ↑ ([ChangedValue.FlowMeter08 > 0.7]);
stm29overThresh ≡ ↑([ChangedValue.Thermocouple29 >100])

Then, we define the restrictions:
∀it2_1 ∈ s1s3on {
 ∃ ev1_2 ∈ sfm7overThresh { it2_1 include ev1_2 ∧
 ∃ ev1_3 ∈ sfm8overThresh { it2_1 include ev1_3 ∧
 ev1_2 is_before[,] ev1_3 ∧
 ∃ ev1_4 ∈ stm29overThresh { it2_1 include ev1_4 ∧
 ev1_3 is_before[,] ev1_4 }}}}

1 To make it easier for people not familiar with temporal logic
(and also easier to type), the actual syntax used is:
 "during [ChangedValue.BlowerPower > 0] always
(ChangedValue.FlowMeter07 >0)"

(specificati
ons)

Report

Database
(trace)

DB
server

ITCL LOGIC
Distributed
ControlUSER

parser
data
access

evaluate

LOG DATA

Figure 3. General architecture.

Process

Process

Process

ITCL

Each specification is evaluated against the logged data
in the database. If the specification is found to be false,
then a counterexample is generated. In particular, the
system shows the first time interval in which the
specification becomes false, and the reasons why. For
example, our system produces the following output:
-- Specification:
∀ inc ∈ increasing {
 Thermocouple11(time(↑ (inc)))<Thermocouple11(time(↓(inc)))
};
 is FALSE because:
When interval inc has the value: Intervalvar=
 Start: sec = 996622420 usec = 367780
 End: sec = 996622421 usec = 377797
 the condition (∀) becomes false.
Operation '<' is FALSE because the operands are:
 First Operand: Longvar= 25
Second Operand: Longvar= 24
where the operands are the values of the Thermocouple.
This report allows the engineer to know where a
specification was violated and to find a solution to the
problem.

6. CONCLUSIONS

Taken together, the data collection and analysis tools
offer developers of distributed control programs the ability
to see what their programs are doing and verify their
correct behavior. Of critical importance is the usability of
the tool suite – if the tools are not easy to use then
developers will not adopt them. We have tried to make our
logging library as easy to use as printf. ITCL requires more
of a learning curve, but we plan to provide more “syntactic
sugar” and graphical interfaces to make it easier to use. We
encourage anyone interested to download our logging tools
at: http://www.traclabs.com/rlog and give us feedback on
how they can be improved.

7. ACKNOWLEDGEMENTS

This work is supported by NASA grant NAS2-99020
administered by NASA Ames Research Center. Pete
Bonasso of Metrica Inc./TRACLabs is the chief software
engineer of the WRS control system and worked with us to
instrument and analyze the control code. Mark Shirley of
NASA Ames Research Center was a key participant in the
formulation of this project and contributed to its
preliminary design.

REFERENCES

[Alur 1990] R. Alur and T. Henzinger. Real-time logic:
Complexity and expressiveness. In Proc. of IEEE
5th Symp. on logic in Computer Science,
Philadelphia, pp. 401-413, June 1990

[Bonasso 2001] R. Peter Bonasso, “Intelligent Control of a NASA
Advanced Water Recovery System,” in
Proceedings of the Sixth International
Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS) 2001.

[Emerson 1982] A. E. Emerson and E. M. Clarke, Using
branching time logic to synthesize synchronization

skeletons. Science of Computer Programming,
1982.

[Gabbay 1980] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On
the temporal analysis of fairness. In Proc. ff the 7th
Annual Symposium on Principles of
Programming Languages, 1980.

[Harel 1990] D. Harel, H. Lachover, A. Naamad, A. Pnueli.
Explicit clock temporal logic. In Proc. of 5th
Annual IEEE Sump. on Logic in Computer
Science, Philadelphia, pp. 401-413, June 1990.

[Heath 1991] M. Heath and J. Etheridge, “Visualizing the
Performance of Parallel Programs,” IEEE
Software 8, 1991.

[Jahanian 1986] Jahanian, F. and A. K. Mok, Safety analysis of
timing properties in real-time systems. IEEE
Transactions on Software Engineering 12 (1986)

[Jahanian 1987] Jahanian, F. and A. K. Mok, A graph-theorem
approach for timing analysis and its
implementation. IEEE Transactions on
Computers, C-36(8):961-975, August 1987

[Kleiman 1996] S. Kleiman, D. Shah and B. Smaalders,
Programming with Threads, SunSoft Press,
Mountain View CA, 1996.

[Kortenkamp
2001]

David Kortenkamp, Tod Milam, Reid Simmons
and Joaquín López Fernández. Collecting and
Analyzing Data from Distributed Control Programs.
Runtime Verification 2001 (Satellite workshop to
CAV’01), Paris, France 2001.

[Koymans
1990]

R. Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Systems J.,
1990

[Kresback 1998] Kurt D. Kresback and David J. Musliner,
“Applying a Procedural and Reactive Approach to
Abnormal Situations in Refinery Control,”
Proceedings of the Conference on Foundations of
Computer-Aided Process Operations (FOCAPO),
1998.

[Moszkowsky
1985]

Ben Moszkowski. “A Temporal Logic for
Multilevel Reasoning About Hardware”, IEEE
Computer 1985; 18:10-19.

[Muscettola
1998]

Nicola Muscetttola, P. Pandurang Nayak, Barney
Pell and Brian C. Williams, “Remote Agent: To
Boldly Go Where No AI System Has Gone Before,”
Artificial Intelligence, 103(1), 5—47, 1998

[Razouk 1989] Razouk, R. R. and M. M. Gorlik, A real-time
interval logic for reasoning about executions of
real-time programs. SIGSOFT SE Notes 114
(1989)

[Schneider
1987]

R. Schneider, “Real-time data monitoring and
visualization,” Technical Report White Paper,
available at www.rti.com, Real-Time Innovations
Inc., 1987.

[Simmons 2000] R. Simmons, D. Apfelbaum, D. Fox, R. P.
Goldman, K. Zita Haigh, D. J. Musliner, M.
Pelican, and S. Thrun. "Coordinated Deployment
of Multiple, Heterogeneous Robots", In
Proceedings of the Conference on Intelligent
Robots and Systems (IROS), Takamatsu Japan,
October 2000.

[Tsai 1996] Tsai, J., Y. Bi, S. Yang and R. Smith, Distributed
Real-Time Systems: Monitoring, Visualization and
Analysis, Wiley & Sons, New York, 1996.

