
Distributed, Autonomous Control of Space Habitats
David Kortenkamp and R. Peter Bonasso

NASA Johnson Space Center ER2
Houston TX 77058

kortenkamp@jsc.nasa.gov, r.p.bonasso1@jsc.nasa.gov

Devika Subramanian
Rice University

Department of Computer Science
Houston TX 77005
devika@cs.rice.edu

Abstract—Long-duration space missions require advanced
life support (ALS) systems that can regenerate air, water
and food. These ALS systems need complex control
strategies that can maintain stable system performance and
balance resources with small margins and minimal buffers.
In this paper we will describe the ALS control task in detail
and give some examples of previous control solutions.
Then we will look at how machine learning techniques can
help create a more adaptive ALS control system. We will
examine reinforcement learning and genetic algorithms and
their relationship to optimizing resource utilization in an
ALS system. Finally, we will present an innovative multi-
step genetic algorithm that generates control strategies that
perform much better than traditional reinforcement learning
or traditional genetic algorithms.

TABLE OF CONTENTS
1. INTRODUCTION
2. ADVANCED LIFE SUPPORT SYSTEMS
3. THE ROLE OF MACHINE LEARNING IN ALS CONTROL
4. EXPERIMENTS WITH A SIMPLIFIED SIMULATION
5. AN INNOVATIVE GENETIC ALGORITHM APPROACH
6. REVISITING REINFORCEMENT LEARNING
7. FUTURE RESEARCH GOALS
8. REFERENCES

1 INTRODUCTION

Advanced life support systems require complex control
strategies that can maintain stable system performance and
balance resources with small margins and minimal buffers.
In closed-loop life support systems there are complex
interactions between sub-systems such as air, water, food
production, solids processing, and the crew. Recent
research at NASA Johnson Space Center has led to
significant insights into autonomous control of advanced
life support (ALS) systems (see Section 2.1). In fact,
routine control of an ALS system is well within the reach of
current techniques. For example, the autonomous control
system described in [Schreckenghost et al. 1998] operated
around the clock for 73 straight days during a 90 day crewed
test with minimal human intervention. However, control
systems such as these rely on hand-coded planning
operators, domain knowledge and reactive procedures. As
long as the operations are routine, well-understood and
properly coded, the control systems perform well. Trouble
occurs when the control system encounters situations that

 0-7803-6599-2/01/$10.00 © 2001 IEEE

have not been hand-coded or when control system operators
want different behavior that is not embodied explicitly in the
control program. In these cases, the system fails and
(expensive) human programmers and domain experts must
add the relevant information into the control system. This
led to our recent focus on applying machine learning
techniques to control of advanced life support systems to
improve their robustness in the face of changes in dynamics
or objective functions.

Any solution method for controlling a life-support system
must address three significant complexities � that the task is
dynamic, non-stationary, and safety-sensitive.

• Dynamic: This means that it is not sufficient only
to find a particular setting that optimizes an
objective function. The issues of state dynamics
and delayed reward have to be considered.

• Non-stationary: An ALS controller must account

for the fact that the dynamics of the system change
over time. This is due to the presence of adaptive
biological organisms (that is, humans and plants),
as well as to the gradual degradation of certain
system components (e.g., filters that clog). Some
of these change slowly, others change abruptly.
The controller must adapt to these changes while
the system is operating. This adaptation requires
learning from data to track changes in system
dynamics, and active experimentation with
improvements to the controller during system
operation in order to respond to those changes.

• Safety-sensitive: Because of the presence of

humans in the system, all adaptations of the
controllers must be conducted within guaranteed
margins of safety. This restricts the applicable
learning algorithms to those which can both
incorporate engineer-specified control limits and
model the domain uncertainty to avoid risky
experiments. This also requires machine learning
techniques that are inspectable and instructable by
humans.

In addition to these complexities of the task, there are other
significant scientific questions that need to be asked with
respect to using machine learning to control advanced life
support systems.

1. What model of itself and its physical plant should
an autonomous control system have? How detailed
does that model have to be? Will a qualitative
model suffice?

2. How can the autonomous control system become

aware of the aspects of the physical plant state that
are hidden with respect to its sensors or its
knowledge?

3. What are the limits of safe experimentation in the

real physical system? To what extent can models
or simulation replace experimentation?

4. What is the role of human intelligence in learning

for autonomous control? How can human
expertise be brought to bear to guide the learning
systems in their explorations? How can learning
systems be inspectible and instructable?

This paper examines the role of machine learning in the
control of a distributed, advanced life support system. In
the next section we introduce advanced life support systems
and the challenges inherent in controlling them. In Section
3 we will look at the general role of machine learning in
control of advanced life support systems by introducing
specific challenges and methodologies. In Section 4 we
introduce a simplified simulation of the complete ALS
control task and describe a number of experiments
performed using that simulation. Section 5 describes an
innovative genetic algorithm approach that has been
developed and its results in controlling the simplified
simulation. Section 6 looks at how we used the results from
the genetic algorithm to reimplement a close-loop
reinforcement learning system.

Figure 1 The interacting subsystems of an advanced life
support system

2 ADVANCED LIFE SUPPORT SYSTEMS

When humans embark on long duration missions such as the
establishment of permanent bases on the Lunar Surface or
travel to Mars for exploration, they will continue to need

food, water and air. For these long duration missions, it
may not be economical or practical to resupply basic life
support elements from Earth. We will need to develop
systems that produce food, purify their water supply,
regenerate oxygen and remove undesirable components of
air. Such a system would be a tightly controlled and closed
loop system in which the growth of crop plants would
contribute to the life support functions. The natural function
of plants would provide food and contribute to water
purification, air revitalization and even the processing of
waste materials. All systems would have to operate under
the restrictions of minimizing volume, mass, energy and
labor. Figure 1 shows a typical advanced life support
configuration and the interaction between subsystems.

2.1 Previous and current control systems

Over the last five years there have been a number of
advanced life support system tests. Some of these have had
crews, others were integrated tests of individual subsystems
and some were just simulations. We have been involved in
autonomous control of these tests since the beginning.

Our first experiences were with interchamber monitoring
and control (IMC) software for a crewed test. This software
was used during the Phase III test of NASA's Lunar/Mars
Life Support Test Program (LMLSTP). For this test, four
crew members lived in a closed habitat for 91 days. Wheat
for air recycling and food was grown in a separate closed
chamber. Our control software managed the movement of
gases between the two chambers and also managed an
incinerator. For details on this control system see
[Schreckenghost et al. 1998].

Our latest control software is for a water recovery system
(WRS) being tested at NASA JSC (see Figure 2). Our
control software manages all components of the system
autonomously. The integrated system runs 24 hours a day
and broadcasts information to user interfaces for remote
operation from the office or home.

Figure 2 The WRS hardware

2.2 Conclusions

From these applications we have an indication that
autonomous control of advanced life support systems is
possible. However, experience with the IMC and WRS
shows that even small changes in the underlying physical
system or in the overall goals of the system require
significant re-coding of control software. For example,
routine recalibration of sensors requires stopping the
autonomy software, changing by hand the control
parameters and then restarting the autonomy software. The
re-coding comes at significant expense. None of these
systems have the ability to self-adapt to changes. The
research described in this paper is aimed at providing just
such self-adaptability to ALS control systems.

2.3 The future: BIO-Plex

The Bioregenerative Planetary Life Support System Test
Complex (BIO-Plex) is the latest NASA JSC testbed for
advanced life support systems. It will consist of a complex
of five chambers at NASA JSC combining biological and
physiochemical life support technologies to provide all the
air and water, and most of the food (up to 90%) for a crew
of four on a continuous basis and crews of up to eight
during crew change-over [Tri 1999; Barta et al 1999].
Initial testing (120-day human test) is scheduled for 2003.
A 240-day human test is scheduled for 2005 and a 425-day
human test is scheduled to start in 2007. BIO-Plex is meant
to simulate on the ground many aspects of a long duration
planetary mission with minimal resupply. It will consist of
several distinct subsystems including air, water, food, solid
waste and climate control.

BIO-Plex will need an advanced control system to maintain
life support. The goal of the control system is completely
autonomous operation of BIO-Plex. Completely
autonomous control means that there will be no ground
support personnel monitoring the facility during operation.
This does not mean that people will never interact with the
autonomous control system. On the contrary, one of the
biggest open research issues is how to allow a crew that
depends on an autonomous control system for its life to
safely and effectively interact with it to achieve complex
goals.

Autonomous control of BIO-Plex will be a large and
challenging AI research area. This paper focuses only on
the application of machine learning techniques to the
autonomous control system. BIO-Plex is an attractive
testbed for machine learning because of the vast
interconnectedness present in the system. Subsystems such
as power, thermal, water, air, and food affect one another in
both obvious and subtle ways. Small changes in one system
can cause profound changes in other parts of the BIO-Plex.
Optimizing for all of these variables is beyond the current
state-of-the-art in machine learning. This problem is
compounded by the fact that the system is constantly
shifting -- filters clog, pumps break, biological water

processors become more or less efficient, etc. -- so
optimization cannot occur just once but must occur many,
many times over the lifecycle of the system.

3 THE ROLE OF MACHINE LEARNING IN ALS
CONTROL

We have begun investigating the role of machine learning
on the control of ALS systems. We have identified some
potential applications of machine learning techniques. In
this section we examine these applications and raise some
research challenges.

3.1 Detecting signatures

Certain sensor “signatures” require specific responses from
the autonomous control system. These signatures are often
hand-coded by the programmer. For example, the
programmer might state that if the temperature is above 100
and the pressure is above 1000 then vent the tank. This is a
trivial example and real-world examples will be more
complex and involved. This means that hand-coded
signatures may not accurately capture the event, especially
if the environment or the physical plant are changing. A
variety of machine learning techniques could be used to
look at the history of the system and adjust the signatures
automatically. A key research challenge in this area is the
following:

• Can we learn to parse the real-world data stream
into recognizable system modes or events?

3.2 Refining models

Many autonomous controllers contain a model of the system
they are trying to control, either explicitly or implicitly.
Typically, these models are hand-coded and do not change.
However, in long-duration missions the underlying physical
system may change dramatically due to damage or
degradation. For example, a filter in a life support system
may clog more frequently than expected. In each of these
cases, machine learning techniques could be used to modify
the internal model of the system based on real-world data.
This is especially necessary if other machine learning
techniques are using these models for optimization (as
discussed in Section 3.6). A key research challenge in this
area is the following:

• Can feedback from actual operation of the system
be used automatically to refine our simulations and
models?

3.3 Learning/optimizing control plans

The behavior of most autonomous systems can be
characterized as a control plan that leads to some desired
result. These plans can be generated by planners, be hand-
coded by programmers, or “emerge” from the interactions of
independent behaviors. In any case, control plans are at the

heart of an autonomous control system. Machine learning
techniques can be used to optimize control plans, especially
in the case of control plans that are generated by planners or
are hand-coded. Optimization of control plans can occur
either by experimenting with a simulation or by looking at
data from previous executions of control plans in the real
world. For example, taking a system from a wake operating
mode to a sleep operating mode might involve establishing
a series of setpoints. Learning could be used to identify the
trajectory of setpoints that transitions the system most
efficiently. Some research challenges in this area are:

• How can we provide safety guarantees when
transferring a controller learned from simulations
into the real system?

• How can the system learn not only control plans
but also the contexts in which the control plans
apply?

• What are the tradeoffs between having the system
learn control plans from scratch as opposed to
“tweaking” existing, working control plans?

3.4 Integration with autonomous control architectures

A large complex ALS system will have existing control
procedures and possibly even an overarching control
architecture. Very few of these incorporate learning or
adaptation. Integration of learning into an existing
autonomous control system raises a number of interesting
research issues, such as:

• How good does the initial set of control behaviors
or rules need to be for learning to be effective?
Can we start tabula rasa or do we need very
effective initial strategies?

• What are the differences between learning control

information, learning procedural information,
learning qualitative modeling information and
learning planning information.

• What are the criteria whereby the autonomous

control system turns on or off learning? Should
learning ever be turned off?

• How does the autonomous control system decide

when to use new learned actions?

3.5 Control system design methodology

The solution space for a control policy in an ALS system is
enormous. We believe that machine learning techniques are
a useful way to “probe” the solution space and give control
system designers an idea as to its topology. Machine
learning techniques could be used to determine the
important control variables and the important (and
sometimes hidden) interactions. In this way, machine
learning algorithms become not just a tool for adjusting the
on-line control system, but also a tool for helping

programmers design an a priori control policy. Using
machine learning in this way helps overcome some
validation and verification issues (since the actual control
code is written by programmers, not the algorithms). Still,
there are a number of research questions that need to be
answered:

• How good of a simulation is needed for results
from a machine learning algorithm that probes the
solution space to be applicable to the physical
system?

• How can the discoveries of machine learning

algorithms be presented to control system
designers such that they understand the topology of
the solution space?

• Which machine learning techniques (i.e.,

reinforcement learning, memory-based learning,
genetic algorithms, etc.) are most useful for
probing the solution space? What are the strengths
and weaknesses of these techniques with respect to
guiding a control system designer?

3.6 Finding optimal resource allocations

Long-duration missions face severe resource constraints,
especially with respect to life support consumables such as
oxygen, water and food. Given adequate simulations,
machine learning techniques such as reinforcement learning
or genetic algorithms can search through combinations of
control actions to discover a control policy that optimizes
usage of a particular resource (or combination of resources).
The resulting policy can be implemented by the autonomous
control system to increase mission duration. The rest of this
paper will focus on resource allocation within the context of
a simple simulation. We will look at a variety of machine
learning techniques. Other groups at NASA are looking at
market-based allocation of resources for ALS systems
[Crawford et al 2000].

4 EXPERIMENTS WITH A SIMPLIFIED SIMULATION

Evaluating machine learning techniques for a system as
complicated as ALS is a daunting task. We decided that the
best way to start was to create a simplified simulation of an
advanced life support system. We wanted a simulation that
was simple enough for us to understand what needed to be
controlled, yet complicated enough to support quality
machine learning research. Using this simulation we would
explore a variety of machine learning techniques, including
reinforcement learning and genetic algorithms. This section
describes the simple simulation in detail and then discusses
some of our early experiments.

4.1 The simulation

This section summarizes the cogent aspects of air, water and
food processes. It is important to note that 1) they are all

deterministic, and 2) the processes take time to both degrade
and to recover, i.e., a reduction or increase in energy to a
process will not immediately reduce or increase its output.
Also, the simulation makes no attempt to balance the mass
flow.

Simulation time is measured in ‘ticks’, which are nominally
one hour. A single tick will run each process once. That is,
the crew will take in clean air, water and food and produce
waste air, water and science. The air and water processes
will take in waste air and water and produce clean air and
water respectively. The plant module will take in energy
and water and produce food and waste water.

The air module takes in exhalant air (i.e., “dirty”) and uses
energy to produce the same amount of clean air as long as
the energy is at least one unit. If the energy is less than one
unit for that tick, no clean air is produced. If energy is less
than 0.25 units no clean air will be produced until three
consecutive time units (ticks) of greater than 0.25 units of
energy have passed.

The water module takes in wastewater and energy and
produces clean water at a specified recovery rate, e.g., 97 %.
Whenever the energy to the water processing drops below a
certain level, the water processor needs to accumulate a
specified amount of energy before it begins to produce
potable again. In particular, if the energy drops below 0.5
units for more than five ticks, its capability to produce
potable water is lost until E energy is accumulated. The
amount of time this takes depends on how much energy is
allocated to the water recovery module each tick.

Food production is a function of water and energy, thus in
the integrated system, the water output from the water
recovery module is split evenly between the crew and the
food production systems. The food production curve is
selected based on the ideal that for N crew, N units of daily
food requirement should be produced in a “days” (24 ticks)
time. Thus, the curve produces N units of food when water
and energy are both greater than or equal to N, and drops off
sharply when the product of the units drops below 1.
Because grain crops are involved, if the energy drops below
0.25 units for more than 168 ticks or if the water drops
below 0.25 units for more than 120 ticks, the crops all die
and no further food production is possible.

The crew model takes in clean air, clean water and food and
produces science and dirty air and waste water at varying
rates depending on the specified activity level during a
given tick. These rates are shown below (Wd = wastewater,
Wc = clean water, Ad = exhalant air, Ac = clean air, F =
food, and S = science):

 Low Activity Level
 Wd = .95Wc
 Ad = .95Ac
 S = (F + Wc + Ac)*0.3

 Medium Activity Level
 Wd = .85Wc
 Ad = .85Ac
 S = (F+Wc+Ac)*0.6

 High Activity Level
 Wd = .75Wc
 Ad = .95Ac
 S = (F+Wc+Ac)*0.9

At the higher activity levels, more science is produced but
with varying loss of efficiencies for converting water and
air. Of course, with enough loss of any of the inputs the
crew will cease to produce science. Specifically the mission
is over if Ac is less than 0.25 per crew member for more
than three ticks, or Wc is less than 0.25 per crew member
for more than 10 ticks or F is less than 0.25 per crew
member per 24 ticks for more than 20 ticks.

There are also stores for food, water and air. We typically
used 25 ticks worth of stores for each. For four people that
is 200 units of water and 100 units of clean air and food
respectively. At each tick the corresponding store can be
used instead of the air, water or food process, thus saving
energy used. The simulation starts the flow from the crew
module, producing science, used air and waste water based
on the starting activity level from an assumed input of N
units of clean air, water and food (given gratis). From there
the dirty air and water flow to each process where they are
either bypassed if the store will be used, or energy is
allocated and the process takes in the flow and yields its
product. Ultimately, clean air, water and food reach the
crew thus completing a tick. Clean water is equally divided
between the crew and the plant crops.

The amount of energy available for the mission is set in an
energy store. When this amount is fixed, the goal of the
system is to allocate energy among the subsystems in an
optimal fashion. Optimality is determined by whether the
goal is the longest mission, the most cumulative science or
some combination of the two. When the energy is used up
and the stores depleted, the life support processes will wind
down and the mission will eventually be terminated due to
the lack of air, water or food for the crew. For the majority
of the experiments described, the energy store was the sun
and was replenished every time step.

4.2 Introduction to learning techniques

We experimented with two different approaches to learning
an optimal control strategy for the system described in the
previous subsection. Formally, the problem we have can be
formulated as a Markov Decision Process (MDP)

),,,(rnextASM = , where S is the set of system states,

A is the set of available control actions,
SSxAnext →: is the transition function of this

deterministic system and r is the local reward function
ℜ→SxAr : . The goal of the learning system is to find a

policy AS →∏ : such that)))(,((
0

∑
∞

=

∏
t

tt SSrE is

maximized or ∑
∞

=

∏
0

))(,(
t

tt sSr is maximized since the

system is deterministic.

One approach to this problem is to learn a value function

),(asQ ∏ , which is the expected cumulative local reward
if one starts from s with action a and follows policy
∏ thereafter. We can use dynamic programming and

recursively formulate),(asQ ∏ as:

)]),,((),([max),(aasnextQasrasQ
Aa

∏
∈

∏ +=

with appropriate boundary conditions where Q values of
terminal states are provided. This equation forms the basis
of the Q learning algorithm [Watkins and Dayan, 1992],
which starts with initial estimates (zero in our case) of

asasQ ,),(∀ and then updates it on-line upon each state

transition),,,(rass ′ as follows:

)],(max[),()1(),(asQrasQasQ
Aa

′′++−=
∈′

αα

where α is the learning rate and indicates how aggressively
new estimates replace old ones.

A second approach to this problem is to directly learn a
policy AS →∏ : without learning a value function. A
popular way to do this is to use a genetic algorithm [Holland
1975]. Genetic algorithms characterize the solution as a bit
string, where each bit represents an action or input into the
system. A population of bit strings is initialized and each
string is tested against the simulation. The best strings are
preserved and operations such as mutation and cross-over
performed. Then the bit strings are re-evaluated and the
process starts over. The next two sections look at these
approaches as applied to the life support simulation.

4.3 Reinforcement learning

The reinforcement learner was a standard on-policy zero-
initialized Q learning system. The state space consisted of
the energy allocated to each of water, air and food, the crew
activity level and the whether each store was in use or not
(yes or no). An action consisted of a designation of one of
seven modules -- air, water, food activity level or one of the
three stores -- and a change: increase by one, decrease by
one or no change -- for an action space of 21. To make the
Q-table more tractable for our initial investigations we
allowed only energy allocations of 3, 4 or 5 units, which
still resulted in a Q-table of over 9000 entries.

The local reward function depended on our goal. When we
wanted to maximize the length of a mission the local reward
was one if the mission lasted one more tick. If the goal was

to maximize science the reward was the amount of science
produced by the crew in that one tick. Whenever the mission
ended due to lack of air, water or food, a negative reward of
-10000 was given. We used epsilon-greedy sampling (10%)
with a learning rate of 0.9 and no discounting. For most runs
we used a benign starting state where all stores are used,
energy allocation is N for each module and an activity level
of 1. The simulation was run continuously during the
learning in this fashion. If t was zero, the simulation was
initialized, the stores and energy allocation corresponding to
the action were set, and the simulation was run for one step.
The learner took in the resulting state, computed a reward
function, updated its Q table, and selected another action. If
the result of the last action was an end of the mission, the
next action would cause the simulation to be reinitialized
before continuing. In effect, we used the model to simulate
as many missions as necessary to reach convergence.

We ran several experiments of varying numbers of samples,
but the Q learner results varied wildly from experiment to
experiment. For example, it produced 185 units of science in
38 ticks before mission end using six thousand samples in
one experiment, and 98 units of science in 23 ticks using
20000 samples in another experiment. The next two tables
show our typically “best” results.

Samples science ticks

502 150.448308 13

1018 318.30795 20

1525 179.515967 30

2037 318.30795 20

2548 318.30795 20

3059 322.06935 20

3577 318.30795 20

4078 318.30795 20

4594 318.30795 20

5111 322.06935 20

5629 322.06935 20

6009 322.06935 20
Table 1 Science as a function of Q-learning samples

(rewarding for science)

Samples ticks % Random

1011 28 90

2014 25 80

3035 28 70

4037 28 60

5070 28 50

6082 28 40

7107 28 30

8217 38 20

9276 38 20

10080 38 20
Table 2 Ticks as a function of Q-learning samples

(rewarding for mission duration)

4.4 Genetic algorithms

Recall from Section 4.2 that a genetic algorithm searches for
a policy by manipulating a bit string that represents actions.
We used a bit-string consisting of 2 bits each (water, air and
food) for the energy allocations (0, 1 and 2 indicate 3, 4 and
5 energy units respectively, and 3 = 5 as well), 2 bits for the
crew activity level (1,2, & 3, and 0 = 1 as well), and 1 bit
for each of the stores (1= store to be used, 0 = store not to be
used) for a total of 11 bits. We typically ran twenty
experiments with starting populations of 100 each. To
evaluate a string, the simulation was run using that string
each tick until the mission ended, i.e., the crew was unable
to produce science due to a lack of air, water or food. The
value of the string was typically either the total ticks until
mission end raised to a power or the accumulated science
raised to a power. Depending on whether the function
stressed mission duration or science the runs invariably
resulted in a mission duration of 31 ticks with 148 units of
total science or 26 ticks with 184 units of science. Two
examples are shown below (additional experiments resulted
in no better policy).

Exp Science Ticks

1 183.9 26

2 184 26

3 183.9 26

4 184 26

5 184 26

6 184 26

7 183.8 26

8 183.8 26

9 184 26

10 184 26

Table 3 11 Bit GA String Results (evaluation = total science
cubed) in 10 experiments (Population size = 100)

Exp Ticks Science

1 31 147.7

2 31 147.5

3 31 49.2

4 31 49.2

5 31 49.2

6 31 51.9

7 31 52

8 31 147.5

9 31 140.9

10 31 147.5
Table 4 11 Bit GA String Results (evaluation = mission

duration (i.e., ticks 5) in 10 experiments (Population size =
100)

5 AN INNOVATIVE GENETIC ALGORITHM

APPROACH
After implementing both the Q-learning system and the
genetic algorithm system it was obvious that they both were
achieving roughly the same results, with the Q-learner doing
slightly better at maximizing mission duration, and almost
twice as well maximizing science. Yet, a simple intuitive
policy of using the stores first before using the life support
processes could achieve a mission duration of 56 ticks and
324 units of science. These learners should have been doing
better.

While the Q-learner was learning a state-action policy, the
GA was learning one action to take regardless of the state of
the system. So we hypothesized that learning what to do for
the next n steps with the GA would result in a better policy.
The idea was to make the strings n times 11 bits long and
evaluate them by stepping the simulation for each 11-bit
action. For example, for a three step GA, to evaluate a 33 bit
string, one would invoke the actions indicated in the first 11
bits, step the simulation, then invoke the actions specified
by the next 11 bits then step the simulation, and finally
invoke the actions designated by the last 11 bits then step
the simulation. The value for the whole string is again the
same function as in GA1, e.g., the accumulated ticks or
science raised to a power, but only after the three steps.
When the mission ended, the simulation was simply
reinitialized, which resulted in zeroing the accumulated
ticks and science. The final most fit individual discovered in
twenty experiments now becomes the policy to use for every
n steps.

Despite the fact that the policy is essentially run open loop
(i.e., no state is used), the results with GA2 were fairly
spectacular compared to the results in Table 3 and Table 4.
We summarize the results in the following graphs.

Mission Duration (Eval = ticks ^ 5)

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

Bitstring Length

ticks

Figure 3 Multistep GA Ticks Results (Population size = 100)

Cumulative Science (Eval = [•science]^3)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

Bitstring Length

Science

Figure 4 Multistep GA Science Results (Population size = 100)

Before continuing it should be pointed out that these curves
are generated in the following manner. A bitstring length of
11 was selected and an initial evaluation target of 315 (in the
case of a pro-ticks search) was asserted. The GA would be
run for twenty experiments with each experiment ending
when the policy represented by the best string was greater
than the evaluation target. The best score of all the
experiments would be set as the new evaluation target, the
bitstring length would be increased by 11, and twenty more
experiments would again be run. The process terminated
when the next increase in bitstring length would only equal
the evaluation target or if no experiment could equal or
better the target after 3000 generations. So the above charts
(and all subsequent) are extended one or two steps to
indicate the evaluation target ceiling that was reached.

GA2 learned to achieve a mission length of 700 days, or to
generate over 1800 units of science. What was it that GA2
was learning about this simple life support simulation?

Figure 5 graphically depicts a kind of pulsing policy GA2
learned for maximizing mission duration.

The ticks policy optimized for mission duration lasted 702
ticks generating 1243 units of science. Figure 5, showing
the first hundred ticks of the policy in effect. An indirect
measure of what is happening in the simulation is the dirty
air and wastewater output from the crew at each tick. Higher
values indicate that the crew module saw more mass of
clean air and clean water as input. Figure 5, showing the
first hundred ticks of the policy in effect, shows that GA2
discovered a policy that allowed the air and water flow to
reach very low levels before pulsing the system with first a
water store use and then an air store use. This is continued
until first the air, and then the water stores is exhausted at
ticks 671 and 675 respectively (see Figure 6). It takes
another 30 ticks for the air to fall to mission ending levels.

Store Allocation and Crew Air and Water Output

0

0.5

1

1.5

2

2.5

3

3.5

4

Ticks

AD

WD

WS

AS

Figure 5 Comparison of Store Use With Dirty Air and Waste Water Output from Crew Module

Stores Levels for Pro-Ticks Policy

0

50

100

150

200

250

Ticks

SW

SA

SP

Figure 6 Stores Consumption

6 REVISITING REINFORCEMENT LEARNING

Our first attempt at using reinforcement learning was not
productive. We were trying to use Q-Learning to
implement an open-loop controller. In an attempt to get
the Q-learning system to perform better, we recast the
state and action spaces to reflect those facets the multi-
step GA had uncovered. In particular, our state space
would reflect the air and water outputs of the crew, the
store status and some measure of the time since an action
was taken.

We constrained the problem so that the only decision the
learner was required to make was whether to use each
store or not. The energy allocation was constrained to be
3 units for each process, and the activity level was fixed at
3 (for a pro-science policy).

The Q model was as follows:

State Space:

Water & Air outputs from crew:

W: 0,1,2 (0 means < 33%, 1 means 33% <= x < 66%, and
2 means >= 66%), where 100% = 4.0
A: 0,1,2 (0 means < 33%, 1 means 33% <= x < 66%, and
2 means >= 66%), where 100% = 4.0

Stores Status:

WS: 0,1 (0 means < 50%, 1 means > 50%), where 100%
= 200
AS: 0,1 (0 means < 50%, 1 means > 50%), where 100% =
100
PS: 0,1 (0 means < 50%, 1 means > 50%), where 100% =
100

Ticks since positive action:

 SW: 0,1 (0 means less than 9, 1 means greater than 9)

 SA: 0,1 (0 means less than 9, 1 means greater than 9)

Action Space:

Use or not use the store for each of water air and plants,
 e.g., (1 0 1) means use the water and plant stores, not the
air store)

Reward function: science2 x water-store x WD x air-store
x AD

The results of one of the runs is shown in Figure 7. While
it is clear that the reinforcement learning algorithm is not
converging, it is producing science at a level equal to the
multi-step genetic algorithm. An examination of the
control philosophy shows the same “pulsing” strategy
employed by the multi-step genetic algorithm.

Samples Science Ticks

647 350.166058 67

1295 362.099302 67

1951 411.486381 68

2622 355.082955 61

3267 264.029052 45

3925 379.153828 68

4554 361.391647 61

5213 909.616541 176

5865 496.283236 92

6500 319.51492 61

7108 284.349158 49

7718 505.187961 92

8361 672.872989 123

9015 482.361459 87

9681 398.32097 74

10068 423.490573 77

RL7B

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000 12000

Samples

Science

Figure 7 Reinforcement learning results for a pro-science policy

7 FUTURE RESEARCH GOALS

This paper describes the very start of a long research
effort into applying machine learning techniques to the
lay out the research issues and to explore some possible
approaches. We are currently working on a more
complex simulation that will have stochastic processes,
more natural cycles (e.g., the crew will sleep, the plants
will go through normal growth cycles, etc.) and more
interesting dynamics. As we slowly increase the
complexity of the simulation we will explore how the
different learning approaches scale. We also plan to
distribute this simulation to the research community to
encourage others to try their approaches. Our ultimate
goal is to integrate adaptive control processes into the
BIO-Plex control system for experimentation with human
crew.

8 REFERENCES

[Barta et al 1999] Dan Barta, et al., “The Biomass
Production System for the Bioregenerative Planetary
Life Support Systems Test Complex: Preliminary
Designs and Considerations,” SAE Paper 1999-01-
2188, 29th ICES, 1999.

 [Crawford et al 2000] Sekou Crawford, Christopher
Pawlowski and Cory Finn, “Power Management in
Regenerative Life Support Systems Using Market-
Based Control,” 30th International Conference on
Environmental Systems, 2000.

[Holland 1975] John Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press, Ann
Arbor MI, 1975.

[Kortenkamp et al 2000] David Kortenkamp, Debra
Schreckenghost and R. Peter Bonasso, “Real-time
Autonomous Control of Space Habitats,” AAAI
Spring Symposium on Real-Time Autonomous
Control, 2000.

 [Tri 1999] Tri, T. O.; “Bioregenerative Planetary Life
Support Systems Test Complex (BIO-Plex): Test
Mission Objectives and Facility Development,” SAE
Paper 1999-01-2186, 29th International Conference
on Environmental Systems, 1999.

[Schreckenghost et al. 1998] Debra Schreckenghost,
Daniel Ryan, Carroll Thronesbery and R. Peter
Bonasso, “Intelligent Control of Life Support
Systems for Space Habitats,” Proceedings of the
Conference on Innovative Applications of Artificial
Intelligence, 1998.

[Watkins and Dayan 1992] C. Watkins and P. Dayan, “Q-
learning,” Machine Learning, 8, 279-292.

David Kortenkamp is a senior research scientist at
Metrica Inc., supporting NASA Johnson Space Center.
He received his Ph.D. in computer science and
engineering from the University of
Michigan in 1993 and his B.S. in
computer science from the University of
Minnesota in 1988. Dr. Kortenkamp
directs nearly $800,000 in annual
research projects and is on a number of
conference and workshop program
committees. He is co-author of the
book Mobile Robots and Artificial Intelligence and is
associate editor of the MIT Press series on Intelligent
Robotics and Autonomous Agents.

R. Peter Bonasso is a senior staff consultant for AI &
Robotics at Metrica Inc, based at NASA Johnson Space
Center. He currently supports the Automation, Robotics
and Simulation Division investigations
of intelligent monitoring and control
using layered architectures. He is the
co-developer of the 3 Tiered Robot
Control Architecture, and has applied
that architecture to the control of
robotic and life support machines. He
received his B.S. in engineering from
the U.S. Military Academy at West Point in 1968 and
master’s degrees in operation research and computer
utilization from Stanford in 1974.

Devika Subramanian is an Associate Professor of
Computer Science at Rice University. She received her
Ph.D. in computer science from
Stanford University in 1989. She is
currently on the IJCAI advisory board
and was the program chair of AAAI
1999. She is on the editorial board of
the Journal of AI Research. Dr.
Subramanian is the author of numerous
conference and journal articles in the
area of machine learning and control
optimization.

