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Abstract—Long-duration space missions require advanced 
life support (ALS) systems that can regenerate air, water 
and food.  These ALS systems need complex control 
strategies that can maintain stable system performance and 
balance resources with small margins and minimal buffers.  
In this paper we will describe the ALS control task in detail 
and give some examples of previous control solutions.  
Then we will look at how machine learning techniques can 
help create a more adaptive ALS control system.  We will 
examine reinforcement learning and genetic algorithms and 
their relationship to optimizing resource utilization in an 
ALS system.  Finally, we will present an innovative multi-
step genetic algorithm that generates control strategies that 
perform much better than traditional reinforcement learning 
or traditional genetic algorithms.     
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1 INTRODUCTION 

Advanced life support systems require complex control 
strategies that can maintain stable system performance and 
balance resources with small margins and minimal buffers. 
In closed-loop life support systems there are complex 
interactions between sub-systems such as air, water, food 
production, solids processing, and the crew.  Recent 
research at NASA Johnson Space Center has led to 
significant insights into autonomous control of advanced 
life support (ALS) systems (see Section 2.1).  In fact, 
routine control of an ALS system is well within the reach of 
current techniques.  For example, the autonomous control 
system described in [Schreckenghost et al. 1998] operated 
around the clock for 73 straight days during a 90 day crewed 
test with minimal human intervention.  However, control 
systems such as these rely on hand-coded planning 
operators, domain knowledge and reactive procedures.  As 
long as the operations are routine, well-understood and 
properly coded, the control systems perform well.  Trouble 
occurs when the control system encounters situations that 
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have not been hand-coded or when control system operators 
want different behavior that is not embodied explicitly in the 
control program.  In these cases, the system fails and 
(expensive) human programmers and domain experts must 
add the relevant information into the control system.  This 
led to our recent focus on applying machine learning 
techniques to control of advanced life support systems to 
improve their robustness in the face of changes in dynamics 
or objective functions.  
 
Any solution method for controlling a life-support system 
must address three significant complexities � that the task is 
dynamic, non-stationary, and safety-sensitive. 
 

• Dynamic: This means that it is not sufficient only 
to find a particular setting that optimizes an 
objective function.  The issues of state dynamics 
and delayed reward have to be considered.   

   
• Non-stationary: An ALS controller must account 

for the fact that the dynamics of the system change 
over time.  This is due to the presence of adaptive 
biological organisms (that is, humans and plants), 
as well as to the gradual degradation of certain 
system components (e.g., filters that clog).  Some 
of these change slowly, others change abruptly.  
The controller must adapt to these changes while 
the system is operating.  This adaptation requires 
learning from data to track changes in system 
dynamics, and active experimentation with 
improvements to the controller during system 
operation in order to respond to those changes. 

   
• Safety-sensitive: Because of the presence of 

humans in the system, all adaptations of the 
controllers must be conducted within guaranteed 
margins of safety.  This restricts the applicable 
learning algorithms to those which can both 
incorporate engineer-specified control limits and 
model the domain uncertainty to avoid risky 
experiments.  This also requires machine learning 
techniques that are inspectable and instructable by 
humans. 

 
In addition to these complexities of the task, there are other 
significant scientific questions that need to be asked with 
respect to using machine learning to control advanced life 
support systems. 

 



1. What model of itself and its physical plant should 
an autonomous control system have?  How detailed 
does that model have to be?  Will a qualitative 
model suffice?   

 
2. How can the autonomous control system become 

aware of the aspects of the physical plant state that 
are hidden with respect to its sensors or its 
knowledge?   

 
3. What are the limits of safe experimentation in the 

real physical system?  To what extent can models 
or simulation replace experimentation?   

 
4. What is the role of human intelligence in learning 

for autonomous control?  How can human 
expertise be brought to bear to guide the learning 
systems in their explorations?  How can learning 
systems be inspectible and instructable?  

 
This paper examines the role of machine learning in the 
control of a distributed, advanced life support system.  In 
the next section we introduce advanced life support systems 
and the challenges inherent in controlling them.  In Section 
3 we will look at the general role of machine learning in 
control of advanced life support systems by introducing 
specific challenges and methodologies.  In Section 4 we 
introduce a simplified simulation of the complete ALS 
control task and describe a number of experiments 
performed using that simulation.  Section 5 describes an 
innovative genetic algorithm approach that has been 
developed and its results in controlling the simplified 
simulation.  Section 6 looks at how we used the results from 
the genetic algorithm to reimplement a close-loop 
reinforcement learning system.   

 

Figure 1 The interacting subsystems of an advanced life 
support system 

2 ADVANCED LIFE SUPPORT SYSTEMS 

When humans embark on long duration missions such as the 
establishment of permanent bases on the Lunar Surface or 
travel to Mars for exploration, they will continue to need 

food, water and air.  For these long duration missions, it 
may not be economical or practical to resupply basic life 
support elements from Earth.  We will need to develop 
systems that produce food, purify their water supply, 
regenerate oxygen and remove undesirable components of 
air.  Such a system would be a tightly controlled and closed 
loop system in which the growth of crop plants would 
contribute to the life support functions.  The natural function 
of plants would provide food and contribute to water 
purification, air revitalization and even the processing of 
waste materials.  All systems would have to operate under 
the restrictions of minimizing volume, mass, energy and 
labor.  Figure 1 shows a typical advanced life support 
configuration and the interaction between subsystems.  

2.1 Previous and current control systems 

Over the last five years there have been a number of 
advanced life support system tests.  Some of these have had 
crews, others were integrated tests of individual subsystems 
and some were just simulations.  We have been involved in 
autonomous control of these tests since the beginning.   
 
Our first experiences were with interchamber monitoring 
and control (IMC) software for a crewed test.  This software 
was used during the Phase III test of NASA's Lunar/Mars 
Life Support Test Program (LMLSTP).  For this test, four 
crew members lived in a closed habitat for 91 days.  Wheat 
for air recycling and food was grown in a separate closed 
chamber.   Our control software managed the movement of 
gases between the two chambers and also managed an 
incinerator.  For details on this control system see 
[Schreckenghost et al. 1998]. 
 
Our latest control software is for a water recovery system 
(WRS) being tested at NASA JSC (see Figure 2).  Our 
control software manages all components of the system 
autonomously.  The integrated system runs 24 hours a day 
and broadcasts information to user interfaces for remote 
operation from the office or home. 

 

Figure 2 The WRS hardware 



2.2 Conclusions 

From these applications we have an indication that 
autonomous control of advanced life support systems is 
possible.  However, experience with the IMC and WRS 
shows that even small changes in the underlying physical 
system or in the overall goals of the system require 
significant re-coding of control software.  For example, 
routine recalibration of sensors requires stopping the 
autonomy software, changing by hand the control 
parameters and then restarting the autonomy software.  The 
re-coding comes at significant expense.  None of these 
systems have the ability to self-adapt to changes.  The 
research described in this paper is aimed at providing just 
such self-adaptability to ALS control systems. 

2.3 The future: BIO-Plex 

The Bioregenerative Planetary Life Support System Test 
Complex (BIO-Plex) is the latest NASA JSC testbed for 
advanced life support systems.  It will consist of a complex 
of five chambers at NASA JSC combining biological and 
physiochemical life support technologies to provide all the 
air and water, and most of the food (up to 90%) for a crew 
of four on a continuous basis and crews of up to eight 
during crew change-over [Tri 1999; Barta et al 1999].  
Initial testing (120-day human test) is scheduled for 2003.  
A 240-day human test is scheduled for 2005 and a 425-day 
human test is scheduled to start in 2007. BIO-Plex is meant 
to simulate on the ground many aspects of a long duration 
planetary mission with minimal resupply.  It will consist of 
several distinct subsystems including air, water, food, solid 
waste and climate control.   
 
BIO-Plex will need an advanced control system to maintain 
life support.  The goal of the control system is completely 
autonomous operation of BIO-Plex.  Completely 
autonomous control means that there will be no ground 
support personnel monitoring the facility during operation.  
This does not mean that people will never interact with the 
autonomous control system.  On the contrary, one of the 
biggest open research issues is how to allow a crew that 
depends on an autonomous control system for its life to 
safely and effectively interact with it to achieve complex 
goals.  

 
Autonomous control of BIO-Plex will be a large and 
challenging AI research area.  This paper focuses only on 
the application of machine learning techniques to the 
autonomous control system.  BIO-Plex is an attractive 
testbed for machine learning because of the vast 
interconnectedness present in the system.  Subsystems such 
as power, thermal, water, air, and food affect one another in 
both obvious and subtle ways.  Small changes in one system 
can cause profound changes in other parts of the BIO-Plex.  
Optimizing for all of these variables is beyond the current 
state-of-the-art in machine learning.  This problem is 
compounded by the fact that the system is constantly 
shifting -- filters clog, pumps break, biological water 

processors become more or less efficient, etc. -- so 
optimization cannot occur just once but must occur many, 
many times over the lifecycle of the system.   

3 THE ROLE OF MACHINE LEARNING IN ALS 
CONTROL 

We have begun investigating the role of machine learning 
on the control of ALS systems.  We have identified some 
potential applications of machine learning techniques.   In 
this section we examine these applications and raise some 
research challenges.  

3.1 Detecting signatures 

Certain sensor “signatures” require specific responses from 
the autonomous control system.  These signatures are often 
hand-coded by the programmer.  For example, the 
programmer might state that if the temperature is above 100 
and the pressure is above 1000 then vent the tank.  This is a 
trivial example and real-world examples will be more 
complex and involved.  This means that hand-coded 
signatures may not accurately capture the event, especially 
if the environment or the physical plant are changing.  A 
variety of machine learning techniques could be used to 
look at the history of the system and adjust the signatures 
automatically.  A key research challenge in this area is the 
following: 
 

• Can we learn to parse the real-world data stream 
into recognizable system modes or events? 

3.2 Refining models 

Many autonomous controllers contain a model of the system 
they are trying to control, either explicitly or implicitly.  
Typically, these models are hand-coded and do not change.  
However, in long-duration missions the underlying physical 
system may change dramatically due to damage or 
degradation.  For example, a filter in a life support system 
may clog more frequently than expected.  In each of these 
cases, machine learning techniques could be used to modify 
the internal model of the system based on real-world data.  
This is especially necessary if other machine learning 
techniques are using these models for optimization (as 
discussed in Section 3.6).  A key research challenge in this 
area is the following: 
 

• Can feedback from actual operation of the system 
be used automatically to refine our simulations and 
models? 

 

3.3 Learning/optimizing control plans 

The behavior of most autonomous systems can be 
characterized as a control plan that leads to some desired 
result.  These plans can be generated by planners, be hand-
coded by programmers, or “emerge” from the interactions of 
independent behaviors.  In any case, control  plans are at the 



heart of an autonomous control system. Machine learning 
techniques can be used to optimize control plans, especially 
in the case of control plans that are generated by planners or 
are hand-coded.  Optimization of control  plans can occur 
either by experimenting with a simulation or by looking at 
data from previous executions of control plans in the real 
world.  For example, taking a system from a wake operating 
mode to a sleep operating mode might involve establishing 
a series of setpoints.  Learning could be used to identify the 
trajectory of setpoints that transitions the system most 
efficiently.  Some research challenges in this area are: 
 

• How can we provide safety guarantees when 
transferring a controller learned from simulations 
into the real system? 

• How can the system learn not only control plans 
but also the contexts in which the control plans 
apply?   

• What are the tradeoffs between having the system 
learn control plans from scratch as opposed to 
“tweaking” existing, working control plans? 

3.4 Integration with autonomous control architectures 

A large complex ALS system will have existing control 
procedures and possibly even an overarching control 
architecture.  Very few of these incorporate learning or 
adaptation.  Integration of learning into an existing 
autonomous control system raises a number of interesting 
research issues, such as: 
 

• How good does the initial set of control behaviors 
or rules need to be for learning to be effective?  
Can we start tabula rasa or do we need very 
effective initial strategies? 

 
• What are the differences between learning control 

information, learning procedural information, 
learning qualitative modeling information and 
learning planning information.   

 
• What are the criteria whereby the autonomous 

control system turns on or off learning?  Should 
learning ever be turned off?  

 
• How does the autonomous control system decide 

when to use new learned actions? 

3.5 Control system design methodology 

The solution space for a control policy in an ALS system is 
enormous.  We believe that machine learning techniques are 
a useful way to “probe” the solution space and give control 
system designers an idea as to its topology.  Machine 
learning techniques could be used to determine the 
important control variables and the important (and 
sometimes hidden) interactions.  In this way, machine 
learning algorithms become not just a tool for adjusting the 
on-line control system, but also a tool for helping 

programmers design an a priori control policy.  Using 
machine learning in this way helps overcome some 
validation and verification issues (since the actual control 
code is written by programmers, not the algorithms).  Still, 
there are a number of research questions that need to be 
answered: 
 

• How good of a simulation is needed for results 
from a machine learning algorithm that probes the 
solution space to be applicable to the physical 
system? 

 
• How can the discoveries of machine learning 

algorithms be presented to control system 
designers such that they understand the topology of 
the solution space? 

 
• Which machine learning techniques (i.e., 

reinforcement learning, memory-based learning, 
genetic algorithms, etc.) are most useful for 
probing the solution space?  What are the strengths 
and weaknesses of these techniques with respect to 
guiding a control system designer? 

3.6 Finding optimal resource allocations 

Long-duration missions face severe resource constraints, 
especially with respect to life support consumables such as 
oxygen, water and food.  Given adequate simulations, 
machine learning techniques such as reinforcement learning 
or genetic algorithms can search through combinations of 
control actions to discover a control policy that optimizes 
usage of a particular resource (or combination of resources).  
The resulting policy can be implemented by the autonomous 
control system to increase mission duration.  The rest of this 
paper will focus on resource allocation within the context of 
a simple simulation.  We will look at a variety of machine 
learning techniques.  Other groups at NASA are looking at 
market-based allocation of resources for ALS systems 
[Crawford et al 2000]. 

4 EXPERIMENTS WITH A SIMPLIFIED SIMULATION 

Evaluating machine learning techniques for a system as 
complicated as ALS is a daunting task.  We decided that the 
best way to start was to create a simplified simulation of an 
advanced life support system.  We wanted a simulation that 
was simple enough for us to understand what needed to be 
controlled, yet complicated enough to support quality 
machine learning research.  Using this simulation we would 
explore a variety of machine learning techniques, including 
reinforcement learning and genetic algorithms.  This section 
describes the simple simulation in detail and then discusses 
some of our early experiments.  

4.1 The simulation 

This section summarizes the cogent aspects of air, water and 
food processes. It is important to note that 1) they are all 



deterministic, and 2) the processes take time to both degrade 
and to recover, i.e., a reduction or increase in energy to a 
process will not immediately reduce or increase its output. 
Also, the simulation makes no attempt to balance the mass 
flow. 
 
Simulation time is measured in ‘ticks’, which are nominally 
one hour.  A single tick will run each process once.  That is, 
the crew will take in clean air, water and food and produce 
waste air, water and science.  The air and water processes 
will take in waste air and water and produce clean air and 
water respectively.  The plant module will take in energy 
and water and produce food and waste water.  
 
The air module takes in exhalant air (i.e., “dirty”) and uses 
energy to produce the same amount of clean air as long as 
the energy is at least one unit. If the energy is less than one 
unit for that tick, no clean air is produced. If energy is less 
than 0.25 units no clean air will be produced until three 
consecutive time units (ticks) of greater than 0.25 units of 
energy have passed. 
 
The water module takes in wastewater and energy and 
produces clean water at a specified recovery rate, e.g., 97 %. 
Whenever the energy to the water processing drops below a 
certain level, the water processor needs to accumulate a 
specified amount of energy before it begins to produce 
potable again. In particular, if the energy drops below 0.5 
units for more than five ticks, its capability to produce 
potable water is lost until E energy is accumulated. The 
amount of time this takes depends on how much energy is 
allocated to the water recovery module each tick. 
 
Food production is a function of water and energy, thus in 
the integrated system, the water output from the water 
recovery module is split evenly between the crew and the 
food production systems. The food production curve is 
selected based on the ideal that for N crew, N units of daily 
food requirement should be produced in a “days” (24 ticks) 
time. Thus, the curve produces N units of food when water 
and energy are both greater than or equal to N, and drops off 
sharply when the product of the units drops below 1. 
Because grain crops are involved, if the energy drops below 
0.25 units for more than 168 ticks or if the water drops 
below 0.25 units for more than 120 ticks, the crops all die 
and no further food production is possible. 
 
The crew model takes in clean air, clean water and food and 
produces science and dirty air and waste water at varying 
rates depending on the specified activity level during a 
given tick. These rates are shown below (Wd = wastewater, 
Wc = clean water, Ad = exhalant air, Ac = clean air, F = 
food, and S = science): 
 
 
 Low Activity Level 
  Wd = .95Wc 
  Ad = .95Ac 
  S = (F + Wc + Ac)*0.3 

 
 Medium Activity Level 
  Wd = .85Wc 
  Ad = .85Ac 
  S = (F+Wc+Ac)*0.6 
 
 High Activity Level 
  Wd = .75Wc 
  Ad = .95Ac 
  S = (F+Wc+Ac)*0.9 
 
At the higher activity levels, more science is produced but 
with varying loss of efficiencies for converting water and 
air. Of course, with enough loss of any of the inputs the 
crew will cease to produce science. Specifically the mission 
is over if Ac is less than 0.25 per crew member for more 
than three ticks, or Wc is less than 0.25 per crew member 
for more than 10 ticks or F is less than 0.25 per crew 
member per 24 ticks for more than 20 ticks. 
 
There are also stores for food, water and air.  We typically 
used 25 ticks worth of stores for each. For four people that 
is 200 units of water and 100 units of clean air and food 
respectively. At each tick the corresponding store can be 
used instead of the air, water or food process, thus saving 
energy used. The simulation starts the flow from the crew 
module, producing science, used air and waste water based 
on the starting activity level from an assumed input of N 
units of clean air, water and food (given gratis). From there 
the dirty air and water flow to each process where they are 
either bypassed if the store will be used, or energy is 
allocated and the process takes in the flow and yields its 
product. Ultimately, clean air, water and food reach the 
crew thus completing a tick. Clean water is equally divided 
between the crew and the plant crops. 
 
The amount of energy available for the mission is set in an 
energy store. When this amount is fixed, the goal of the 
system is to allocate energy among the subsystems in an 
optimal fashion. Optimality is determined by whether the 
goal is the longest mission, the most cumulative science or 
some combination of the two. When the energy is used up 
and the stores depleted, the life support processes will wind 
down and the mission will eventually be terminated due to 
the lack of air, water or food for the crew.  For the majority 
of the experiments described, the energy store was the sun 
and was replenished every time step. 
 

4.2 Introduction to learning techniques 

We experimented with two different approaches to learning 
an optimal control strategy for the system described in the 
previous subsection.  Formally, the problem we have can be 
formulated as a Markov Decision Process (MDP) 

),,,( rnextASM = , where S  is the set of system states, 

A  is the set of available control actions, 
SSxAnext →: is the transition function of this 



deterministic system and r is the local reward function 
ℜ→SxAr : .  The goal of the learning system is to find a 
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system is deterministic. 
 
One approach to this problem is to learn a value function 

),( asQ ∏ , which is the expected cumulative local reward 
if one starts from s with action a and follows policy 
∏ thereafter.  We can use dynamic programming and 

recursively formulate ),( asQ ∏ as: 
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with appropriate boundary conditions where Q values of 
terminal states are provided.  This equation forms the basis 
of the Q learning algorithm [Watkins and Dayan, 1992], 
which starts with initial estimates (zero in our case) of 

asasQ ,),( ∀ and then updates it on-line upon each state 

transition ),,,( rass ′ as follows: 
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∈′

αα  

where α is the learning rate and indicates how aggressively 
new estimates replace old ones. 
 
A second approach to this problem is to directly learn a 
policy AS →∏ :  without learning a value function.  A 
popular way to do this is to use a genetic algorithm [Holland 
1975].  Genetic algorithms characterize the solution as a bit 
string, where each bit represents an action or input into the 
system.  A population of bit strings is initialized and each 
string is tested against the simulation.  The best strings are 
preserved and operations such as mutation and cross-over 
performed.  Then the bit strings are re-evaluated and the 
process starts over.  The next two sections look at these 
approaches as applied to the life support simulation.     

4.3 Reinforcement  learning 

The reinforcement learner was a standard on-policy zero-
initialized Q learning system. The state space consisted of 
the energy allocated to each of water, air and food, the crew 
activity level and the whether each store was in use or not 
(yes or no). An action consisted of a designation of one of 
seven modules -- air, water, food activity level or one of the 
three stores -- and a change: increase by one, decrease by 
one or no change -- for an action space of 21. To make the 
Q-table more tractable for our initial investigations we 
allowed only energy allocations of 3, 4 or 5 units, which 
still resulted in a Q-table of over 9000 entries. 
 
The local reward function depended on our goal.  When we 
wanted to maximize the length of a mission the local reward 
was one if the mission lasted one more tick.  If the goal was 

to maximize science the reward was the amount of science 
produced by the crew in that one tick. Whenever the mission 
ended due to lack of air, water or food, a negative reward of 
-10000 was given. We used epsilon-greedy sampling (10%) 
with a learning rate of 0.9 and no discounting. For most runs 
we used a benign starting state where all stores are used, 
energy allocation is N for each module and an activity level 
of 1. The simulation was run continuously during the 
learning in this fashion. If t was zero, the simulation was 
initialized, the stores and energy allocation corresponding to 
the action were set, and the simulation was run for one step. 
The learner took in the resulting state, computed a reward 
function, updated its Q table, and selected another action. If 
the result of the last action was an end of the mission, the 
next action would cause the simulation to be reinitialized 
before continuing. In effect, we used the model to simulate 
as many missions as necessary to reach convergence. 
 
We ran several experiments of varying numbers of samples, 
but the Q learner results varied wildly from experiment to 
experiment. For example, it produced 185 units of science in 
38 ticks before mission end using six thousand samples in 
one experiment, and 98 units of science in 23 ticks using 
20000 samples in another experiment. The next two tables 
show our typically  “best” results. 
 

Samples science ticks

502 150.448308 13

1018 318.30795 20

1525 179.515967 30

2037 318.30795 20

2548 318.30795 20

3059 322.06935 20

3577 318.30795 20

4078 318.30795 20

4594 318.30795 20

5111 322.06935 20

5629 322.06935 20

6009 322.06935 20  
Table 1 Science as a function of Q-learning samples 

(rewarding for science) 

Samples ticks % Random

1011 28 90

2014 25 80

3035 28 70

4037 28 60

5070 28 50

6082 28 40

7107 28 30

8217 38 20

9276 38 20

10080 38 20  
Table 2 Ticks as a function of Q-learning samples 

(rewarding for mission duration) 



4.4 Genetic algorithms 

Recall from Section 4.2 that a genetic algorithm searches for 
a policy by manipulating a bit string that represents actions.  
We used a bit-string consisting of 2 bits each (water, air and 
food) for the energy allocations (0, 1 and 2 indicate 3, 4 and 
5 energy units respectively, and 3 = 5 as well), 2 bits for the 
crew activity level (1,2, & 3, and 0 = 1 as well), and 1 bit 
for each of the stores (1= store to be used, 0 = store not to be 
used) for a total of 11 bits. We typically ran twenty 
experiments with starting populations of 100 each. To 
evaluate a string, the simulation was run using that string 
each tick until the mission ended, i.e., the crew was unable 
to produce science due to a lack of air, water or food. The 
value of the string was typically either the total ticks until 
mission end raised to a power or the accumulated science 
raised to a power. Depending on whether the function 
stressed mission duration or science the runs invariably 
resulted in a mission duration of 31 ticks with 148 units of 
total science or 26 ticks with 184 units of science. Two 
examples are shown below (additional experiments resulted 
in no better policy). 
 

Exp Science Ticks

1 183.9 26

2 184 26

3 183.9 26

4 184 26

5 184 26

6 184 26

7 183.8 26

8 183.8 26

9 184 26

10 184 26  

Table 3 11 Bit GA String Results (evaluation = total science 
cubed) in 10 experiments (Population size = 100) 

 
 
 
 
 
 
 

Exp Ticks Science

1 31 147.7

2 31 147.5

3 31 49.2

4 31 49.2

5 31 49.2

6 31 51.9

7 31 52

8 31 147.5

9 31 140.9

10 31 147.5  
Table 4 11 Bit GA String Results (evaluation = mission 

duration (i.e., ticks 5) in 10 experiments (Population size = 
100) 

5 AN INNOVATIVE GENETIC ALGORITHM 

APPROACH 
After implementing both the Q-learning system and the 
genetic algorithm system it was obvious that they both were 
achieving roughly the same results, with the Q-learner doing 
slightly better at maximizing mission duration, and almost 
twice as well maximizing science. Yet, a simple intuitive 
policy of using the stores first before using the life support 
processes could achieve a mission duration of 56 ticks and 
324 units of science. These learners should have been doing 
better. 
 
While the Q-learner was learning a state-action policy, the 
GA was learning one action to take regardless of the state of 
the system. So we hypothesized that learning what to do for 
the next n steps with the GA would result in a better policy. 
The idea was to make the strings n times 11 bits long and 
evaluate them by stepping the simulation for each 11-bit 
action. For example, for a three step GA, to evaluate a 33 bit 
string, one would invoke the actions indicated in the first 11 
bits, step the simulation, then invoke the actions specified 
by the next 11 bits then step the simulation, and finally 
invoke the actions designated by the last 11 bits then step 
the simulation. The value for the whole string is again the 
same function as in GA1, e.g., the accumulated ticks or 
science raised to a power, but only after the three steps.  
When the mission ended, the simulation was simply 
reinitialized, which resulted in zeroing the accumulated 
ticks and science. The final most fit individual discovered in 
twenty experiments now becomes the policy to use for every 
n steps. 
 
Despite the fact that the policy is essentially run open loop 
(i.e., no state is used), the results with GA2 were fairly 
spectacular compared to the results in Table 3 and Table 4.  
We summarize the results in the following graphs. 
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Figure 3 Multistep GA Ticks Results (Population size = 100) 

 

Cumulative Science (Eval = [•science]^3)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

Bitstring Length

Science

 
Figure 4 Multistep GA Science Results (Population size = 100) 



Before continuing it should be pointed out that these curves 
are generated in the following manner. A bitstring length of 
11 was selected and an initial evaluation target of 315 (in the 
case of a pro-ticks search) was asserted. The GA would be 
run for twenty experiments with each experiment ending 
when the policy represented by the best string was greater 
than the evaluation target. The best score of all the 
experiments would be set as the new evaluation target, the 
bitstring length would be increased by 11, and twenty more 
experiments would again be run. The process terminated 
when the next increase in bitstring length would only equal 
the evaluation target or if no experiment could equal or 
better the target after 3000 generations. So the above charts 
(and all subsequent) are extended one or two steps to 
indicate the evaluation target ceiling that was reached. 
 
GA2 learned to achieve a mission length of 700 days, or to 
generate over 1800 units of science. What was it that GA2 
was learning about this simple life support simulation? 

Figure 5 graphically depicts a kind of pulsing policy GA2 
learned for maximizing mission duration. 
 
The ticks policy optimized for mission duration lasted 702 
ticks generating 1243 units of science. Figure 5, showing 
the first hundred ticks of the policy in effect. An indirect 
measure of what is happening in the simulation is the dirty 
air and wastewater output from the crew at each tick. Higher 
values indicate that the crew module saw more mass of 
clean air and clean water as input. Figure 5, showing the 
first hundred ticks of the policy in effect, shows that GA2 
discovered a policy that allowed the air and water flow to 
reach very low levels before pulsing the system with first a 
water store use and then an air store use. This is continued 
until first the air, and then the water stores is exhausted at 
ticks 671 and 675 respectively (see Figure 6). It takes 
another 30 ticks for the air to fall to mission ending levels. 
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Figure 5 Comparison of Store Use With Dirty Air and Waste Water Output from Crew Module
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Figure 6 Stores Consumption

 

6 REVISITING REINFORCEMENT LEARNING 

Our first attempt at using reinforcement learning was not 
productive.  We were trying to use Q-Learning to 
implement an open-loop controller.  In an attempt to get 
the Q-learning system to perform better, we recast the 
state and action spaces to reflect those facets the multi-
step GA had uncovered. In particular, our state space 
would reflect the air and water outputs of the crew, the 
store status and some measure of the time since an action 
was taken. 
 
We constrained the problem so that the only decision the 
learner was required to make was whether to use each 
store or not. The energy allocation was constrained to be 
3 units for each process, and the activity level was fixed at 
3 (for a pro-science policy). 
 
The Q model was as follows: 
 
State Space:   
 
Water & Air outputs from crew:   
 
W: 0,1,2 (0 means < 33%, 1 means 33% <= x < 66%, and 
2 means >= 66%), where 100% = 4.0  
A: 0,1,2 (0 means < 33%, 1 means 33% <= x < 66%, and 
2 means >= 66%), where 100% = 4.0   
 

Stores Status:   
 
WS: 0,1 (0 means < 50%, 1 means > 50%), where 100% 
= 200     
AS: 0,1 (0 means < 50%, 1 means > 50%), where 100% = 
100     
PS: 0,1 (0 means < 50%, 1 means > 50%), where 100% = 
100     
 
Ticks since positive action: 
       
 SW: 0,1 (0 means less than 9, 1 means greater than 9)
      
 SA: 0,1 (0 means less than 9, 1 means greater than 9) 
 
Action Space: 
 
Use or not use the store for each of water air and plants, 
 e.g., (1 0 1) means use the water and plant stores, not the 
air store)     
 
Reward function: science2 x water-store x WD x air-store 
x AD  
 
The results of one of the runs is shown in Figure 7.  While 
it is clear that the reinforcement learning algorithm is not 
converging, it is producing science at a level equal to the 
multi-step genetic algorithm.  An examination of the 
control philosophy shows the same “pulsing” strategy 
employed by the multi-step genetic algorithm. 
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Figure 7 Reinforcement learning results for a pro-science policy 

7 FUTURE RESEARCH GOALS 

This paper describes the very start of a long research 
effort into applying machine learning techniques to the 
lay out the research issues and to explore some possible 
approaches.  We are currently working on a more 
complex simulation that will have stochastic processes, 
more natural cycles (e.g., the crew will sleep, the plants 
will go through normal growth cycles, etc.) and more 
interesting dynamics.  As we slowly increase the 
complexity of the simulation we will explore how the 
different learning approaches scale.  We also plan to 
distribute this simulation to the research community to 
encourage others to try their approaches.  Our ultimate 
goal is to integrate adaptive control processes into the 
BIO-Plex control system for experimentation with human 
crew.  
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