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Abstract
Procedures are pervasive in spacecraft operations
and are used to control every aspect of human
spaceflight. Both ground controllers and crew
members use procedures on a daily basis. Current
procedure operations are document-focused with
little computer support. This paper describes an
information-focused procedure representation and
the development of procedure assistance tools that
allow for adjustably autonomous procedure opera-
tions. The procedure representation is XML-based
with direct links to system sensors and actuators.
The procedure assistant can use the XML represen-
tation to execute autonomously a procedure under
careful human supervision. This approach allows
current operations to continue while providing a
path to increased automation over time and as the
situation allows.

1 Introduction
Procedures are the accepted means of commanding space-
craft. They encode the operational knowledge of a system as
derived from system experts, testing, training and experience.
NASA has tens of thousands of procedures for Space Shut-
tle and the International Space Station (ISS), which are used
daily by both flight controllers and crew. In current Space
Shuttle and ISS operations, procedures are stored as Word
files or in display-oriented XML schemas. That is, they are
treated as documents and maintained as such. Procedures are
displayed to operators using applications separate from the
applications used to display commands and telemetry. This
means that procedures cannot currently interact with com-
mands and telemetry to help an operator’s situation aware-
ness. As NASA begins to adopt new commanding and dis-
play technologies under the Mission Control Technologies
(MCT) project, there is an opportunity to rethink procedures
and their relationships with command and display interfaces.
The goal is to treat procedures as information that can be ma-
nipulated by computer programs that are integrated with the
spacecraft’s command and data handling systems.

In current operations, procedures are executed manually
using pre-defined command and control displays. Manual
execution of procedures can be useful in complex situations

or when the state of the spacecraft is unknown or uncer-
tain. However, it is time consuming in nominal situations and
doesn’t allow for monitoring procedure execution for safety
and training purposes. We are developing an adjustably au-
tonomous procedure assistant that can autonomously execute
parts or all of a procedure by checking telemetry and issuing
commands while also allowing for manual execution.

2 Background
Two key technologies being developed at NASA have cre-
ated an opportunity to significantly change the manner in
which procedures are managed and executed by flight con-
trollers. These two technologies are the Procedure Repre-
sentation Language (PRL) and new mission control teleme-
try and commanding displays being developed by MCT. We
discuss each of these briefly.

2.1 Procedure Representation Language
PRL is an XML schema that defines a variety of tags that can
be used to describe a procedure [Kortenkamp et al., 2007;
2008]. There is also an Eclipse-based, drag-and-drop editing
environment to create PRL procedures [Izygon et al., 2008].
In PRL, the highest level is a procedure tag that marks the
beginning of a new procedure. Each procedure consists of
steps that describe smaller tasks within the procedure. Steps
themselves have blocks that are containers for instructions
that provide explicit detail about commanding a system. Each
of these components can have automation data that controls
their execution status.

Procedures
A procedure is the top-level entity in PRL. Each procedure
has a human-entered name and number. Each procedure also
has a unique identifier. A procedure can contain a block of
“meta-data” with information about the procedure such as the
author, comments, revisions, etc. Each procedure can contain
parameters that are passed into the procedure at execution
time. A procedure can also contain local variables that can
be used within the procedure. All procedures can have Au-
tomation Data that controls when and how they are executed.
A procedure has as its body one or more steps.

Steps
A step has a specific purpose or goal within the procedure.
Each step has a human-entered name, a number that is gen-



erated sequentially and a unique identifier. Each step has an
optional information statement, which is human-readable text
that can provide additional information to a human perform-
ing the step. Each step must end in one of three ways: 1) A
conditional branch in which Boolean expressions are paired
with step identifiers and execution branches to the first step
whose Boolean expression evaluates to TRUE; 2) A goto-
step in which execution continues at the step identified in the
goto-step; and 3) An exit procedure in which execution ends.
Each step can have Automation Data controlling its execu-
tion. Each step has as its body one or more blocks.

Blocks
Blocks are wrappers that contain the instructions necessary
to accomplish the step. The most basic block is an Ordered
Block, which contains one or more instructions that are ex-
ecuted one after the other. An Unordered Block contains
one or more instructions that can be executed in any order.
Other block constructs offer control over execution flow such
as if-then, repeat-until and while. Each block contains an-
other block or a group of instructions.

Instructions
Instructions are the atomic actions of PRL. There are a wide
variety of instructions, often tailored for different disciplines.
A Command Instruction issues a computer command (possi-
bly with parameters) to the underlying system. A Verify In-
struction compares a specific telemetry item to a target value.
If the comparison is TRUE the instruction succeeds and exe-
cution continues. If the comparison is FALSE then execution
halts and the procedure fails. A Wait Instruction halts execu-
tion either for a specified period of time or until a Boolean
expression becomes TRUE. The Call Procedure Instruction
calls another procedure using the procedure identifier and
passes any required parameters. Those are just a few of the
more important instructions in PRL. Each instruction can also
have Automation Data that controls its execution.

Automation Data
Automation Data is used to control execution in PRL. Au-
tomation Data includes a pair of gating conditions called Pre-
Conditions and PostConditions. These are Boolean expres-
sions that must evaluate to TRUE before execution of the pro-
cedure, step or instruction begins and after execution ends or
the procedure execution fails. Automation Data also includes
a pair of wait conditions called StartConditions and EndCon-
ditions. These are also Boolean expressions that must eval-
uate to TRUE before execution can begin and end. If these
conditions evaluate to FALSE then execution waits until they
become TRUE. Automation Data also includes InvariantCon-
ditions that are Boolean expressions that must remain TRUE
throughout execution of the procedure, step or instruction or
execution fails. Automation Data also includes a description
of the resources necessary to execute the procedure, step or
instruction. Automation Data can apply at the procedure, step
or instruction level.

2.2 Mission Control Technologies
The Mission Control Technologies (MCT) Project at NASA
Ames Research Center is developing technologies to change

fundamentally the way applications for mission control are
designed, constructed and deployed [Trimble et al., 2006].
Rather than building software as monolithic applications,
MCT enables software to be built from fine-grained, end-user
composable components and services from which software
functionality may be assembled and easily modified. The cur-
rent focus of the MCT project is on telemetry and command-
ing displays. The core concepts of MCT are: user objects,
manifestations of user objects, user composable groups, dis-
tributed object sharing and a consistent visual style [Group,
2009].

Figure 1: An example MCT display.

User objects User objects are things that users can manip-
ulate and are designed to reflect their real-world counterparts.
For example, a sensor on ISS might be represented as an MCT
user object that contains its current value and can be displayed
in many different ways. User objects are made up of MCT
components, which are the programming implementation of
the objects.

Manifestations User objects can be displayed in an MCT
user interface in many different ways. These displays of the
objects are manifestations or views. Each view refers to ex-
actly the same underlying object.

Groups MCT displays are compositions of user objects.
That is, different views of different objects can be placed to-
gether in the MCT display at the discretion of the user. Poli-
cies can restrict the kinds of compositions that are allowed to
reflect organizational decisions.

Distributed object sharing User objects can be shared
amongst all operators. A certain set of pre-defined user ob-
jects are always shared. Objects created by operators them-
selves may be shared if they want. Any changes to an object
are reflected across all users and all views of the object.

Figure 1 shows an example MCT display. The left pane
(Directory) is a listing of all user objects (or components)
available to the operator. The middle pane (Canvas) shows
groups of composed objects and their views as arranged by



the operator. The right pane (Inspector) shows details of se-
lected MCT components.

Figure 2: An ISS procedure for transitioning MDMs showing
the current display format.

Figure 3: An ISS display showing MDM telemetry. This dis-
play is used while performing the MDM transitioning proce-
dure. The upper left shows the MDM ID, Frame Count and
Processing State, all of which are referenced in the procedure.

2.3 Running example
Throughout this paper, we will use an actual ISS procedure
as a running example. A small snippet of this procedure is
shown in Figure 2. This Figure shows the procedure as it
currently appears to both ground controllers and crew. This
procedure transitions an MDM (an ISS computer) from OFF
to STANDBY. The first step verifies that the MDM is op-

erational by having operator verify several different teleme-
try values. The second step issues some commands to turn
off caution and warning messages that would result from this
process. The rest of the procedure is similar, with a combi-
nation of verifying telemetry and issuing commands. This
procedure document points the operator to where on their
telemetry displays they need to look for a specific telemetry
value and what the value should be. In the same manner, the
procedure document points the operator to the specific com-
mand they need to issue. Both the telemetry values and the
specific commands are on displays that are separate from the
procedure document. Figure 3 shows an example of a display
for ISS that would be used during performance of this pro-
cedure. Thus, the operator first looks at the procedure, then
looks at a telemetry display such as this one to verify that the
actual MDM telemetry matches that of the procedure.

We have authored this procedure in PRL. The PRL cap-
tures not only the structure of the procedure, but also captures
in a machine-understandable format, the telemetry identifiers,
the comparison operator and the target value. For example,
the “Verify MDM ID - INT 2” instruction in the procedure
would have, in PRL, the unique identifier for the MDM ID
telemetry value, a representation of the equal operator and
the target value of INT 2, which is an enumeration. Thus, a
computer program could check that indeed the value of the
MDM ID telemetry is equal to INT 2 by comparing the cur-
rent telemetry value from the ISS with the expected value in
the procedure. This same is true for commands, which are
represented in the PRL as well.

3 Approach
Our approach to assisting operators in procedure execution
is to leverage the authoring of procedures in PRL with the
new telemetry and commanding displays in MCT to provide
a procedure viewer and assistant in MCT that seamlessly in-
tegrates telemetry, commanding and procedures. This ap-
proach consists of a procedure viewer that renders the PRL in
a human-readable fashion within the MCT windowing envi-
ronment and a procedure execution assistant that understands
the machine-readable parts of the PRL procedure and can pro-
vide automation and other assistance. The key is to allow the
human operator full control over the execution semantics of
the procedure. This is important because the environment in
which the procedure is performed is quite variable and spe-
cific parts of the procedure may need to be skipped, re-done,
verified or altered based on the current execution environ-
ment.

3.1 Procedure viewer in MCT
The procedure viewer needs to render the PRL into a human-
readable representation, ideally as close as possible to the
traditional procedure format shown in Figure 2. Our pro-
cedure viewer implementation also has significant additional
features. For example, live telemetry is embedded into the
procedure display, command buttons are also embedded, a
focus bar shows the current procedure execution point, col-
lapsable steps declutter the procedure display and annotations
about current procedure state are displayed. Figure 4 shows



Figure 4: A procedure viewer in MCT that supports procedure automation.

our MDM procedure in our procedure viewer. The left pane
contains a list of all available procedures. Selecting a pro-
cedure displays it in the right pane. Within that pane, the
procedure steps and instructions are on the left side, the live
telemetry and command buttons are on the right side and the
far right is used for annotations that support adjustable auton-
omy. Along the top is a control panel for starting, pausing
and stopping the procedure. The procedure viewer is not es-
pecially relevant to a paper about automating procedures, ex-
cept that the viewer needs to support a variety of adjustably
autonomous interactions required to allow the human opera-
tor control over procedure execution. These are all covered in
the next section, which looks at a procedure execution assis-
tant.
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PRL Library

PAX
MCT 

Procedure 
Display

automated telemetry & command values manual telemetry & command values 
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Figure 5: The overall software architecture

3.2 PAX
The Procedure Assistant for eXecution (PAX) is a software
process that reads PRL and allows procedures to be both
manually and automatically executed depending upon the op-
erational constraints and the current situation. PAX inter-
acts with the procedure display, implemented using the MCT
framework, and with commanding and telemetry systems to
automatically dispatch commands and evaluate telemetry un-
der tight supervision of the operator. PAX supports both a
manual and an automated mode, either of which can be cho-
sen from the control panel at the top of the procedure.

How PAX fits into the overall software architecture is
shown in Figure 5. Procedure are loaded into MCT from a
PRL Library. PAX finds specific command and telemetry def-
initions by querying an ontology. The user starts execution of
a procedure by telling PAX which procedure to execute, and
how to execute it. Status of PAX’s procedure execution are
fed both to a RESTful interface and back to MCT. PAX sends
commands to and receives telemetry from the underlying sys-
tem, in this case an ISS simulation.

Manual Mode In manual mode (see Figure 6), all instruc-
tions are performed and marked as completed by the oper-
ator. This is almost identical to the current operations, ex-
cept that live telemetry and commands are embedded in the
procedure display. Thus, if a command instruction requires
that an operator send a particular command, the procedure
display provides a button to send the command. However,
the command is only sent if the operator clicks on the com-
mand button. PAX does provide a “bookmark” for the op-



Figure 6: Running a procedure manually

erator to indicate their current place in the procedure. The
marker may be moved to any element in the procedure by the
operator. Instructions that require telemetry checks (e.g., ver-
ification instructions) will be computed by PAX and marked
if the telemetry is incorrect. The operator, however, is still ul-
timately responsible for performing the telemetry check and
marking the instruction as finished. For example, the Verify
MDM ID - INT 2 instruction” mentioned in 2.3 would be vi-
sually verified by the operator. If the ”MDM ID” telemetry
item was not ”INT 2”, PAX would mark the instruction red.
The operator would then set the instruction as ”FAILED” by
clicking the instruction and selecting ”Mark as failed”. If the
”MDM ID” telemetry item was correct, PAX would mark the
instruction green. The operator would then click the button
”Mark as completed and continue to next step”

Manual mode is offered as a way for flight controllers or
crew to perform procedures similar to current operations. All
decisions are made by the flight controller or crew member
with PAX providing some support. Procedure performance
is enhanced by embedding telemetry and commands in the
procedure. However, flight controllers or crew can always ig-
nore that feature and perform the procedure using the existing
command and telemetry displays as shown in Figure 3.

Automated Mode When a procedure is executed by PAX
in automated mode (see Figure 7) , each instruction is com-
puted and executd by PAX. Commands and telemetry are au-
tomatically issued and checked respectively. PAX detects off-
nominal situations that are described in the PRL, halts execu-
tion, and marks the problematic instruction and the procedure
as failed (see Figure 8) . Off-nominal situations include com-
mands that fail to send, out of bounds telemetry values, etc.
In essence, PAX is acting just as a human operator would act
– checking telemetry and issuing commands. Because this is
such a drastic departure from current procedure operations,
we have designed an infrastructure in which the operator can
have very explicit control over procedure execution by PAX.
While procedures are considered the standard by which oper-
ations occur, the fluidity of space missions means that oper-
ations will sometimes need to deviate from the standard pro-

Figure 7: Running an automated procedure in MCT

Figure 8: A procedure failing

cedure. PAX is not designed to recognize these situations.
In the next few paragraphs we outline some of the operator
interaction capabilities built into PAX.

Figure 9: Adding a breakpoint to a procedure



Breakpoints can be inserted into the procedure at any loca-
tion. Breakpoints tell PAX not to proceed with autonomous
execution until an operator gives consent. Breakpoints are
created by simply right-clicking on a procedure element and
selecting a breakpoint. They appear as small stop signs in the
procedure display (see Figure 9). Note that setting a break-
point at every instruction in the procedure is not equivalent to
manual execution. Even with breakpoints, PAX is still verify-
ing telemetry and issuing commands, which is not the case in
manual mode. Breakpoints do allow operators to ensure that
the context for the procedure is still valid.

Figure 10: Skipping a step in a procedure

Sometimes a part of a procedure may not be relevant in the
current context. Rewriting the procedure to match the context
is too time consuming, so in current operations a flight note
is attached to the procedure by a flight controller to modify
it temporarily. Typically, flight notes instruct the operator to
skip specific parts of the procedure. To replicate this situ-
ation, we allow the operator to mark specific instructions in
the procedure as ones to be skipped (see Figure 10). PAX will
then not execute those in automated mode. These notations
do not affect the underlying PRL, which remains intact.

Skipping is the main, run-time alteration of a procedure.
Several shorthand operator controls have been developed to
provide easier control over a procedure. For example, PAX
can be told to start from a specific point in the procedure
(equivalent to skipping the prior instructions). PAX can also
be told to execute only parts of the procedure (equivalent to
skipping all the rest). PAX can also be told to restart the pro-
cedure at a specific point after it has been stopped, paused
or PAX detects a failure condition. This might be used, for
example, to resend a command that has failed. PAX can be
told that specific instructions are already completed (identical
in functionality to skipping them, but rendered differently on
the display). Each of these capabilities allows an operator to
tailor procedure execution using PAX to their current mission
needs.

System Ontology A PRL file contains only part of the in-
formation necessary for autonomously executing procedures.

Commands and telemetry for the underlying system are de-
scribed in an Ontology Web Language (OWL) file. The PRL
references this OWL file when describing which command to
execute or which telemetry item to monitor. For a given com-
mand, the OWL file contains information regarding the ID
of the command, the operational nomenclature, the command
arguments, their data types, and what system component. For
a given telemetry, the OWL file contains the ID of the teleme-
try, the operation nomenclature, the data type of the telemetry,
and to what system component it belongs.

Remote access Other software processes may want to know
the current state of procedure execution. Thus, PAX pub-
lishes all state information of procedure execution using JAX-
RS, a Java implementation of Representational State Transfer
[Fielding, 2000] or REST. The RESTful interface is essen-
tially a web service running on the same machine as PAX.
The following are valid GET requests to PAX:

• /available - lists available procedure PAX can exe-
cute

• /available/(id) - returns the PRL of the specified
procedure

• /procedures - lists currently executing procedures in
PAX along with their status and runtime ID

• /procedures(runtime_id) - lists execution log
of specified procedure. For example, when the proce-
dure started, when a particular instruction finished, etc.

The above GET requests can also be modified with date, sta-
tus, and result filters. Valid statuses for procedures are UN-
KNOWN, INITIATED, FINISHED, PAUSED, STOPPED.
Valid results for a procedure are UNKNOWN, SUC-
CEEDED, FAILED, ABORTED. For example, a GET re-
quest to /procedures?date=2010-11-04T21:55:
32.346-04:00&state=FINISHED will return all the
procedures that have finished after April 11th at 21:55. The
following are valid POST requests to PAX:

• /available/(id) - starts execution of a procedure
and returns the new runtime ID

We are currently using this remote access to generate reports
of procedure execution metrics, e.g., how long the procedure
took to execute, if it was executed correctly, and who exe-
cuted it. We also plan to use remote access to drive external
web sites and smart phone apps to monitor procedure execu-
tion.

4 Future Work
Treating procedures as information represented in PRL opens
up a large number of new research directions. Activity plans
can be built automatically using information contained in
PRL (see [Boddy and Bonasso, 2009] for an early version
of this). We are exploring using plan recognition techniques
to detect when procedures have been manually started so as
to alert ground controllers to crew activities. Previous work
on plan recognition for procedure execution was not linked to
PRL, but showed the usefulness of the approach [Bonasso et



Figure 11: Auxiliary system displays integrated with proce-
dure execution

al., 1997]. Efforts are also underway to use procedure perfor-
mance metrics to monitor crew fatigue and stress. Some com-
plex procedures are performed by several operators work-
ing in parallel on multiple subsystems. Our procedure dis-
plays can be extended to coordinate these activities and main-
tain awareness across the team. We are also looking to ex-
plore the use of procedures in robot operations and have per-
formed some preliminary investigations [Schreckenghost et
al., 2008]. Lastly, we are working to integrate auxiliary sys-
tem displays with automated procedure execution for further
situational awareness (see Figure 11). The left pane shows the
current procedure as it’s being executed, while the right pane
automatically brings up existing system displays as the pro-
cedure executes. The existing procedure displays are overlaid
with generated annotations and highlighting (the white box),
drawing the operator’s eye to important information. For ex-
ample, if an executing procedure affects multiple subsystems
of a piece of equipment, these subsystems are highlighted in
the system display for the operator.

5 Conclusion
Procedure performance consumes a significant amount of
ground controllers and crew time and are a source of poten-
tial human error. We are developing a suite of tools to replace
the current document-oriented procedure approach at NASA
with an electronic procedure approach in which an XML file
representing the procedure is interpreted for display, assis-
tance, and execution by computer programs. The computer
programs are designed to interact with the new NASA Mis-
sion Control Center (MCC) software environment. These
new procedure representations and assistants seek to reduce
operator and crew workload and catch performance errors.
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