
A Procedure Representation Language for Human Spaceflight Operations 
 
 

David Kortenkamp, R. Peter Bonasso, Debra Schreckenghost 
TRACLabs Inc., 1012 Hercules, Houston TX 77058 

 korten@traclabs.com, r.p.bonasso@nasa.gov, ghost@ieee.org  
 

K. Michael Dalal 
Perot Systems, NASA Ames Research Center, Moffett Field CA 

mdalal@arc.nasa.gov 
 

Vandi Verma 
Jet Propulsion Laboratory, Pasadena CA 

vandi@jpl.nasa.gov 
 

Lui Wang 
NASA JSC ER2 Houston TX 77058 

lui.wang-1@nasa.gov 
 

 
Abstract 

 
Procedures are at the heart of all crewed spacecraft 
operations.  They are the accepted means to command 
systems.  Current procedure representations do not 
lend themselves to automation.  A new procedure 
representation language (PRL) is being proposed to 
NASA’s Constellation program to allow for procedures 
to be automated whenever possible. PRL is similar to 
many other procedural languages that have been 
developed over the past decade such as RAPS and 
PLEXIL.  Its main advantage is in representing 
information that humans will need to perform a 
procedure in addition to information that the 
autonomous system will need.  This allows for 
implementation of adjustable autonomy in which either 
a human or a computer can execute different parts of a 
procedure.  Examples from International Space Station 
and robotic procedures are given in this paper.     
 
1. Introduction 
Procedures are the accepted means of commanding 
spacecraft. Procedures encode the operational 
knowledge of a system as derived from system experts, 
testing, training and experience.  NASA has tens of 
thousands of procedures for Space Shuttle and the 
International Space Station (ISS), which are used daily 
by both flight controllers and crew.  As an example, 

there is a procedure on ISS to perform a smoke alarm 
test.  For ISS operations, procedures are represented in 
an XML format that is presentation-based.  That is, the 
format describes how the procedure should look when 
displayed.  ISS procedures are then executed manually 
using system displays.  For Constellation programs, 
NASA is pursuing an operations concept in which 
procedures can begin with manual execution then, over 
time, shift to more automated execution as situations 
and experiences warrant.  To support this new 
operations concept we are developing a new 
representation for procedures called a Procedure 
Representation Language (PRL).  PRL includes support 
for automating procedure execution without taking 
away any of the current information for human 
operators contained in the existing ISS procedures.  
Thus, it allows for a gradual and seamless increase of 
automation.    
 
2. Motivation 
PRL is one of the first execution languages designed 
for both humans and automated systems.  Almost all 
previous execution languages are built for fully 
automated systems in which humans have well-defined 
roles that overlap very little with the role of 
automation.  In the systems we are designing there is a 
significant overlap between the tasks that can be 
performed by a human and those that can be executed 



by a computer.  In most cases, tasks can be done by 
either. At first a task will be performed almost entirely 
by humans; gradually, portions of it will be automated 
with the human always kept informed and able to 
intervene.  This is called adjustable autonomy [5] and 
allows for gradual introduction of autonomy.  This 
allows for a fallback to manual operations in specific 
situations and allows the level of automation to be set 
based on what is appropriate for each situation.   
 
3. Structure of PRL 
PRL is currently defined as an XML schema that 
defines a variety of tags that can be used to describe a 
procedure.  At the highest level is a procedure tag that 
marks the beginning of a new procedure.  Each 
procedure consists of steps that describe smaller tasks 
within the procedure.  Steps themselves have blocks 
that are containers for instructions that provide explicit 
detail about commanding a system.  Each of these 
components can have automation data that controls 
their execution status.  In this section we describe the 
main components of PRL. 
 
3.1. Procedures 
A procedure is the top-level entity in PRL.  Each 
procedure has a human-entered name and number.  
Each procedure also has a unique identifier.  A 
procedure can contain a block of “meta-data” with 
information about the procedure such as the author, 
comments, revisions, etc.  Each procedure can contain 
parameters that are passed into the procedure at 
execution time.  A procedure can also contain local 
variables that can be used within the procedure.  All 
procedures can have Automation Data (see Section 
3.5) that controls when and how they are executed.  A 
procedure has as its body one or more steps.   
 
3.2. Steps 
A step has a specific purpose or goal within the 
procedure.  Each step has a human-entered name, a 
number that is generated sequentially and a unique 
identifier.  Each step has an optional information 
statement, which is human-readable text that can 
provide additional information to a human performing 
the step.  Each step must end in one of three ways: 1) 
A conditional branch in which Boolean expressions are 
paired with step identifiers and execution branches to 
the first step whose Boolean expression evaluates to 
TRUE; 2) A goto-step in which execution continues at 
the step identified in the goto-step; and 3) An exit 
procedure in which execution ends.  Each step can 
have Automation Data controlling its execution (see 
Section 3.5).  Each step has as its body one or more 
blocks. 

3.3. Blocks 
Blocks are wrappers that contain the instructions 
necessary to accomplish the step.   The most basic 
block is an Ordered Block, which contains one or more 
instructions that are executed one after the other.  An 
Unordered Block contains one or more instructions that 
can be executed in any order.  Other block constructs 
offer control over execution flow.  These are: 1) If 
Then block in which a Boolean expression is matched 
to a block.  If the Boolean expression evaluates to 
TRUE the block is executed.  An optional Else block is 
executed if the Boolean expression evaluates to 
FALSE; 2) For Each block in which a list and a block 
are given and the block is executed for each item in the 
list; and 3) While block in which a Boolean expression 
is matched with a block and the block executes while 
the Boolean expression evaluates to TRUE.  Each 
block contains another block or a group of instructions.    
 
3.4. Instructions 
Instructions are the atomic actions of PRL.  There are a 
wide variety of instructions, which will be detailed in 
this section.  A Command Instruction issues a 
computer command (possibly with parameters) to the 
underlying system.  A Verify Instruction compares a 
specific telemetry item to a target value.  If the 
comparison is TRUE the instruction succeeds and 
execution continues.  If the comparison is FALSE then 
execution halts and the procedure fails.  An Ensure 
Instruction is similar to a Verify Instruction except that 
if the comparison fails a command is given to the 
underlying system.  A Wait Instruction halts execution 
either for a specified period of time or until a Boolean 
expression becomes TRUE.  The Call Procedure 
Instruction calls another procedure using the procedure 
identifier and passes any required parameters.  The 
Call Procedure Instruction can be blocking, meaning 
that the calling procedure halts execution until the 
called procedure is finished or non-blocking, in which 
case both procedures execute simultaneously.  The Call 
Function Instruction calls a user-defined function 
running on the underlying system.  A Manual 
Instruction is used for commands that need to be 
performed by a human, that is, they require manual 
contact.  This instruction simply contains text that is 
displayed to the user.  An Input Instruction acquires 
data from a user (or other source) and assigns it to a 
local variable in the procedure.  Each instruction can 
also have Automation Data that controls its execution.     
 
3.5. Automation Data 
Automation Data is used to control execution in PRL.  
Automation Data includes a pair of gating conditions 
called PreConditions and PostConditions.  These are 



Boolean expressions that must evaluate to TRUE 
before execution of the procedure, step or instruction 
begins and after execution ends or the procedure 
execution fails.  Automation Data also includes a pair 
of wait conditions called StartConditions and 
EndConditions.  These are also Boolean expressions 
that must evaluate to TRUE before execution can begin 
and end.  If these conditions evaluate to FALSE then 
execution waits until they become TRUE.  Automation 
Data also includes InvariantConditions that are 
Boolean expressions that must remain TRUE 
throughout execution of the procedure, step or 
instruction or execution fails.  Automation Data also 
includes a description of the resources necessary to 
execute the procedure, step or instruction.  This can be 
used by a planner to resolve conflicts in concurrent 
execution.  Automation Data can apply at the 
procedure, step or instruction level.        
 
4. PRL and other execution languages 
PRL represents operations for both humans and 
automation. It was developed after extensively 
studying existing execution languages that were 
developed in automated robotics research, and also 
procedures currently used in human space flight 
operations. In particular, many PRL constructs come 
from execution languages such as PLEXIL or RAPS.  
We have also implemented translators from PRL to 
PLEXIL and RAPS.  In this section we compare PRL 
with two other popular execution languages.   
 
4.1. PLEXIL 
 The Plan Execution Interchange Language (PLEXIL) 
[1] is a language for representing plans for automation. 
It has been used to operate rovers in a simulation of a 
lunar robotic site survey, and has been used to 
demonstrate automation for International Space Station 
(ISS) operations. Like PRL, PLEXIL's core form is 
represented in XML, and XML-based technologies are 
used extensively in its specification, implementation, 
and verification.  
    PLEXIL’s structure is simpler than that of PRL.  In 
PLEXIL a plan is represented as a tree of uniform 
structures called nodes, with only one means of 
composition: internal list nodes simply aggregate their 
children.  In contrast, PRL has a heterogeneous mix of 
structures, which includes a variety of composable 
blocks and a large instruction set, with a specific 
nesting order.  Yet both languages represent a plan as a 
hierarchical decomposition of tasks: high level tasks 
are closer to the root node (or procedure level), while 
leaf nodes (or instructions) are primitive actions such 
as assigning to a local variable or sending a command 
to hardware. 

    A major difference between PRL and PLEXIL is 
found in their execution logic. The execution of 
PLEXIL is entirely condition driven.  Each node 
contains a set of conditions that enable and govern the 
node's execution and outcome.  These condition-driven 
semantics, which allow a natural representation of 
concurrency and event-driven monitoring, were 
adopted by PRL, but only as a secondary control 
mechanism.  The primary means of control in PRL is 
conditional branching at the step level.  Each step 
specifies either the next step(s) to which control may 
transfer, or a mode in which to immediately exit the 
procedure. 
    The simplicity of PLEXIL's structure and control 
logic extends naturally to both its execution semantics 
and implementation.  The execution of PLEXIL is 
defined by an elegant formal framework, which also 
proves useful properties of the language [2].  The 
essence of the PLEXIL executive (plan interpreter) is 
implemented in several hundreds of lines of C++ code.  
At the same time, PLEXIL lacks PRL's human-centric 
expressiveness of plans, which includes an application 
domain oriented ontology, features for interacting with 
visual displays, and support for adjustable autonomy.  
Unlike PRL, PLEXIL is not a practical user 
programming language for substantial procedures or 
plans, and is more suitable as a target language for 
planners or translators. 
    With much success, PRL procedures have been 
automatically translated into PLEXIL plans and 
executed by the PLEXIL executive, thus making the 
two languages highly complementary.  The translator, 
which is written in the XML transformation language 
XSLT, performs at its highest level the straightforward 
mapping of PRL constructs into PLEXIL nodes shown 
in Figure 1. The complexity of translation resides 
mainly in two areas, the translation of PRL's control 
flow, and the "instrumentation" of the PLEXIL plan 
needed to support adjustable automation. 
 



 
Figure 1: PRL to PLEXIL translation 
 

PRL's branching (which occurs between steps only) 
is translated into a node enabling and disabling 
mechanism wherein a node representing a given step 
has a start condition formed in part from a composition 
of the branching conditions in all steps that branch to 
the given step.  Furthermore the node’s execution is 
disabled at all but these occasions to fully heed the 
procedure's specified control flow.  Figure 2 illustrates 
the resulting PLEXIL node structure. 
 

 
Figure 2: PRL branching in PLEXIL 

Adjustable autonomy is achieved by executing 
procedure elements with respect to their assigned level 
of autonomy, or LOA.  The translation from PRL to 
PLEXIL adds constructs to acquire LOA in a manner 
similar to any other operation performed by PLEXIL.  
In particular, the PLEXIL plan sends queries to an 
LOA server for a given node and executes the node 
accordingly.  For example, when executing a node X 
representing a given step, if the LOA for this step is 
consent, another node that issues a command querying 
the user for consent is executed, and a confirmation 
enables the execution of X. Figure 3 illustrates the 
resulting PLEXIL node structure. 
 

 
Figure 3: Adjustable autonomy in PLEXIL 
 
4.2. RAPS and APEX  
The Reactive Action Package system (RAPs) [3] and 
Apex [4] were designed to execute predefined AI plans 
reactively.  RAPs and Apex are similar enough for the 
following discussion that we will use the RAPs system 
as the exemplar.  Reactive AI plans are decomposable 
into executable code, have expected world states to be 
achieved, preconditions and post-conditions for each 
task, and detect when the plan is failing and invoke 
contingency plans.  A procedure is a simple plan, that 
is, a set of steps executed in a defined order to 
accomplish a goal.  As such, PRL can represent such 
plans and a RAPs (or Apex) exec can execute them.  
Indeed, we have developed a PRL to RAPs translator 
and have translated and executed a number of PRL 
procedures based on actual NASA procedures.   

The one drawback of PRL in this regard is that the 
semantics of procedure execution require that all steps 
be tied to the same parent procedure.  In RAPs, any 
group of instructions is a procedure (a RAP).  So at a 
choice point in RAPs, each branch invokes another 
RAP and the parent RAP is finished.  In order to keep 
the parent-child continuity that PRL requires, the top 
level RAP resulting from a PRL translation is a large 
execution tree of all the paths that could result from all 
of the choice points.  This requires that the RAP 



interpreter maintain this tree until the final path 
through it has been realized. 

Beyond this problem, there are two aspects of 
executing AI plans reactively that stretch the 
capabilities of the current PRL language to be executed 
by a RAPs exec.  Both have to do with the fact that 
beyond executing linear plans, RAPs is reactive, that 
is, the order of execution of any instruction is 
dependent at any moment on the dynamic state of the 
world. 

The first aspect of reactivity that is difficult to 
achieve in PRL is the ability to handle concurrent 
execution.  AI plans are usually only partially ordered 
and the final execution order of their steps is situation-
dependent.  The current PRL makes unordered 
execution difficult to manage.  This is especially 
apparent with regard to failure.  RAPs has the ability to 
detect failures and to invoke alternative plans based on 
the type of failure.   For example, if a step fails by 
timing out before achieving its goal, RAPs may simply 
re-invoke the procedure.  RAPs can also encode more 
than one way (method) to achieve a result.  If the first 
method fails, the RAPs interpreter will invoke an 
alternative depending on the cause of the failure.  
There is little support in the current PRL for this kind 
of reactive control. 

The other aspect of reactivity involves the way one 
develops plans to be executed by RAPs.  One usually 
starts by defining a set of primitives that command 
objects in the physical world and obtain telemetry from 
them, for example, a robot_move to a set of 
coordinates with a data monitor that watches the 
robot's position.  From these we can develop a higher-
level procedure for the robot to visit a series of 
waypoints.  Assuming the robot has an arm with an 
end-effector, one might also have primitives to move 
the arm to a pose and to track the arm's movement as 
well as to grasp and ungrasp objects.  From these one 
could develop a pick-and-place procedure.  Combining 
the two higher-level procedures, one could then build a 
top-level procedure that goes to various locations to 
collect soil samples. 

But each sub-procedure with which the top-level 
procedure is composed is reactive.  If the pick-and-
place sub-procedure fails, the top-level procedure can 
try again, skip the object and move to the next 
waypoint or fail altogether. While it is possible to 
construct procedures from other procedures in PRL, it 
does not provide the degree of control over the 
activation of sub-procedures that is provided by RAPS. 

Finally, both RAPs and Apex support the concept of 
monitors, that is, procedures which “wakeup” 
periodically, check the world for certain states -- e.g., a 
fire monitor -- and go back to “sleep”.  These 
procedures never "finish" in the traditional sense of 

procedure completion.  PRL has as of yet no constructs 
for easily defining such monitors. 

 

 
Figure 4: An ISS EPS Procedure 

 
5. PRL in action 
We have used PRL in two domains at NASA Johnson 
Space Center.  The first domain is procedures to 
control the International Space Station.  The second 
domain is procedures in the cockpit of a lunar surface 
robot. 
 
5.1. ISS Application 
The ISS has thousands of procedures that are used for 
control and troubleshooting.  Figure 4 shows the firswt 
page of an actual ISS procedure for configuring an 
electrical power system component.  This particular 
procedure takes in a single parameter (X) that is the 
specific component that is to be configured.  
Commands (cmd) are issued on the component.  
Verifies (√) are performed on telemetry coming from 
the component.  The second step issues a series of 
commands to the component in a loop (not shown in 
the figure).  On ISS this procedure is executed 
manually by crew members who issue commands 
through a command and control interface (the various 



‘sel’ instructions in the procedure are navigations 
through the interface).   

We have re-authored this particular ISS procedure 
into PRL.  This requires embedding the actual 
computer commands and telemetry in the procedure so 
that it can potentially be executed autonomously.  Here 
is PRL pseudo-code for the first step of the procedure: 
 
Procedure 
   Parameters 
      id=“X” externalType=“RPCM”        

parameterType=“In” 
   LocalVariables 
      id=“Y” externalType=“RPC” 
   ExitModes 
      id=“exit_success” Message=“Procedure exited  

successfully” 
      id=“exit_verify_failed” Message=“Procedure failed on 

 verify” 
   ProcedureTitle 
      name=“RPCM Power On Reset” number=“5.420”  

id=“proc_5420” 
 
   Step id=“step_1” title=“Configuring RPCM after powerup” 
      OrderedBlock id=“block_1” 
         CommandInstruction id=“instr_1” 
            Description “cmd [X] Common Clear” 
            CommandIdentifier X.RPCMCommonClear 
         VerifyInstruction id=“instr_2” 
            ExitModeReference=“exit_verify_fail” 
            Description “Verify [X] Power On Reset -- blank” 
            Value X.PowerOnReset 
            Operator “equal” 
            TargetValue “blank” 
      GotStep stepRef=“step_2” 
    

This PRL file contains a parameter passed into the 
procedure of type RPCM and a local variable of type 
RPC.  An RPCM is a power module on ISS and an 
RPC is a switch in that power module.  There are 
dozens of RPCMs on ISS that can all be configured 
with this same procedure.  The parameter, X, specifies 
which RPCM is being configured in this particular 
instance.  Exit modes provide messages out of the 
procedure when it exits.  In this case there are two, one 
for a successful exit and one if a verify fails.  The 
pseudo-code shows one step of the procedure.  The 
stem has one command instruction and one verify 
instruction.  The command instruction has an identifier 
that needs to be created at run-time since the command 
needs to go to the correct RPCM.  The verify 
instruction compares a telemetry value with a target 
value using an operator.   

As an experiment, the full PRL file representing ISS 
procedure 5.420 was translated into PLEXIL and 
executed using the PLEXIL Executive (see Section 
4.2) against a simulation of the ISS Electrical Power 

System (EPS).   A procedure display (see Figure 5) and 
associated tools provided execution context to the end 
user.     
 
5.2. Robotic Application 
PRL has also been used to represent procedures 
running on a cockpit to command autonomous robots 
at a distance.  In these cases the PRL specified various 
start-up and shut-down procedures and served to 
orchestrate robot activities.  Low-level, closed-loop 
control of the robot was on-board and activated by the 
procedures.  Here is an example of a robotic PRL in 
pseudo-code:  
 
Procedure 
   Parameters 
      id=“X” dataType=“real” parameterType=“In” 
      id=“Y” dataType=“real” parameterType=“In” 
     id=“A” dataType=“real” parameterType=“In” 
   ExitMode 
      id=“exit_succeed” Message=“Succeeded” 
      id=“exit_failed” Message=“Failed” 
      id=“exit_cancelled” Message=“Cancelled” 
 
   ProcedureTitle 
      name=“ DRIVE TO XYA” number=“100”  

id=“proc_100” 
 
   Step id=“step_1” title=“Send a command to the robot to  

          move to the specified location” 
      OrderedBlock id=“block_1” 

CommandInstruction id=“instr_1” 
    AutomationData 

              EndConditions timeout-“20 seconds” 
                      CommandQueueStatus = 2 OR 
       CommandQueueStatus = 5 OR 
       CommandQueueStatus = 6 OR 
       CommandQueueStatus = 7 
           PostConditions  

      exitModeReference="exit_failed" 
       CommandQueueStatus = 6 

     Description “Send CCmd::DriveToXYA() then  
wait for command to succeed” 

                  CommandIdentifier DriveToXYA 
                             Parameters X, Y, A 
          
      ExitProcedure exitModeReference="exit_succeeded" 
 

This procedure has three parameters – the (X,Y) 
location for the robot to drive to and its final 
orientation (A).  There is one step with one ordered 
block that has a single instruction.  The instruction has 
Automation Data.  Specifically, there is an end 
condition that says that this instruction is not finished 
until the value of CommandQueueStatus is either 2, 5, 
6, or 7.  This means that the execution status of this 
instruction is not complete until this end condition is 
met or until the timeout of 20 seconds passes, after 



which the instruction fails.  There is also a post 
condition that the CommandQueueStatus be equal to 6 
or the instruction (and procedure) fails with exitMode 
failed.  The single command instruction calls a system 
command (DriveToXYA) with the given parameters.  
After Step 1 is finished the procedure exits with 
exitMode succeeded.  

This (and other) procedures were executed on the 
cockpit for the Centaur robot at NASA Johnson Space 
Center. The cockpit user saw a procedure display as 
shown in Figure 5.  The display could be used to select 
procedures for execution and to monitor their status.  
The executive dispatched commands to the robot over 
a network connection and monitored for telemetry.  
 
6. Conclusions and future work 
PRL is in the early stages of being investigated by the 
Constellation program of use in future missions.   The 
feedback has been positive so far.  One improvement 
we are considering is creating a more modular 
language.  Currently there is one schema that contains 
all of the PRL constructs.  For some simple 
applications (e.g., early Orion operations) not all PRL 
constructs will be necessary.  Also, robotic operations 
often require different constructs than single vehicle 
operations.  Our users want the ability to load in only 

the PRL constructs they need for their specific 
application.   We are examining how we can create a 
core PRL that is then extended to accommodate 
different operational scenarios.   

We are also exploring adding a greater ability to 
deal with concurrency in PRL.  Since many current 
procedures are performed by a single human 
concurrency is not a real requirement.  However, has 
missions become more complex and automated having 
multiple procedures being executed at the same time 
will be more likely.  In these cases we need to address 
resource contention and timing constraints between 
procedures. 

PRL is only as useful as the tools that are available 
for it. We are building a Procedure Integrated 
Development Environment (PRIDE) for authoring 
procedures in PRL, executives that execute PRL (or 
translations of PRL), displays that show a PRL file to a 
human and show its execution status and procedure 
support services that handle human interaction with the 
procedure during execution.  PRL’s advantage is that it 
provides a single representation can be used by all of 
these tools, thus streamlining the authoring, 
verification, validation and execution of procedures.     
 

Figure 5: The Procedure Display for PRL 
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