
A Procedure Representation Language for Human Spaceflight Operations

David Kortenkamp, R. Peter Bonasso, Debra Schreckenghost
TRACLabs Inc., 1012 Hercules, Houston TX 77058

 korten@traclabs.com, r.p.bonasso@nasa.gov, ghost@ieee.org

K. Michael Dalal
Perot Systems, NASA Ames Research Center, Moffett Field CA

mdalal@arc.nasa.gov

Vandi Verma
Jet Propulsion Laboratory, Pasadena CA

vandi@jpl.nasa.gov

Lui Wang
NASA JSC ER2 Houston TX 77058

lui.wang-1@nasa.gov

Abstract

Procedures are at the heart of all crewed spacecraft
operations. They are the accepted means to command
systems. Current procedure representations do not
lend themselves to automation. A new procedure
representation language (PRL) is being proposed to
NASA’s Constellation program to allow for procedures
to be automated whenever possible. PRL is similar to
many other procedural languages that have been
developed over the past decade such as RAPS and
PLEXIL. Its main advantage is in representing
information that humans will need to perform a
procedure in addition to information that the
autonomous system will need. This allows for
implementation of adjustable autonomy in which either
a human or a computer can execute different parts of a
procedure. Examples from International Space Station
and robotic procedures are given in this paper.

1. Introduction
Procedures are the accepted means of commanding
spacecraft. Procedures encode the operational
knowledge of a system as derived from system experts,
testing, training and experience. NASA has tens of
thousands of procedures for Space Shuttle and the
International Space Station (ISS), which are used daily
by both flight controllers and crew. As an example,

there is a procedure on ISS to perform a smoke alarm
test. For ISS operations, procedures are represented in
an XML format that is presentation-based. That is, the
format describes how the procedure should look when
displayed. ISS procedures are then executed manually
using system displays. For Constellation programs,
NASA is pursuing an operations concept in which
procedures can begin with manual execution then, over
time, shift to more automated execution as situations
and experiences warrant. To support this new
operations concept we are developing a new
representation for procedures called a Procedure
Representation Language (PRL). PRL includes support
for automating procedure execution without taking
away any of the current information for human
operators contained in the existing ISS procedures.
Thus, it allows for a gradual and seamless increase of
automation.

2. Motivation
PRL is one of the first execution languages designed
for both humans and automated systems. Almost all
previous execution languages are built for fully
automated systems in which humans have well-defined
roles that overlap very little with the role of
automation. In the systems we are designing there is a
significant overlap between the tasks that can be
performed by a human and those that can be executed

by a computer. In most cases, tasks can be done by
either. At first a task will be performed almost entirely
by humans; gradually, portions of it will be automated
with the human always kept informed and able to
intervene. This is called adjustable autonomy [5] and
allows for gradual introduction of autonomy. This
allows for a fallback to manual operations in specific
situations and allows the level of automation to be set
based on what is appropriate for each situation.

3. Structure of PRL
PRL is currently defined as an XML schema that
defines a variety of tags that can be used to describe a
procedure. At the highest level is a procedure tag that
marks the beginning of a new procedure. Each
procedure consists of steps that describe smaller tasks
within the procedure. Steps themselves have blocks
that are containers for instructions that provide explicit
detail about commanding a system. Each of these
components can have automation data that controls
their execution status. In this section we describe the
main components of PRL.

3.1. Procedures
A procedure is the top-level entity in PRL. Each
procedure has a human-entered name and number.
Each procedure also has a unique identifier. A
procedure can contain a block of “meta-data” with
information about the procedure such as the author,
comments, revisions, etc. Each procedure can contain
parameters that are passed into the procedure at
execution time. A procedure can also contain local
variables that can be used within the procedure. All
procedures can have Automation Data (see Section
3.5) that controls when and how they are executed. A
procedure has as its body one or more steps.

3.2. Steps
A step has a specific purpose or goal within the
procedure. Each step has a human-entered name, a
number that is generated sequentially and a unique
identifier. Each step has an optional information
statement, which is human-readable text that can
provide additional information to a human performing
the step. Each step must end in one of three ways: 1)
A conditional branch in which Boolean expressions are
paired with step identifiers and execution branches to
the first step whose Boolean expression evaluates to
TRUE; 2) A goto-step in which execution continues at
the step identified in the goto-step; and 3) An exit
procedure in which execution ends. Each step can
have Automation Data controlling its execution (see
Section 3.5). Each step has as its body one or more
blocks.

3.3. Blocks
Blocks are wrappers that contain the instructions
necessary to accomplish the step. The most basic
block is an Ordered Block, which contains one or more
instructions that are executed one after the other. An
Unordered Block contains one or more instructions that
can be executed in any order. Other block constructs
offer control over execution flow. These are: 1) If
Then block in which a Boolean expression is matched
to a block. If the Boolean expression evaluates to
TRUE the block is executed. An optional Else block is
executed if the Boolean expression evaluates to
FALSE; 2) For Each block in which a list and a block
are given and the block is executed for each item in the
list; and 3) While block in which a Boolean expression
is matched with a block and the block executes while
the Boolean expression evaluates to TRUE. Each
block contains another block or a group of instructions.

3.4. Instructions
Instructions are the atomic actions of PRL. There are a
wide variety of instructions, which will be detailed in
this section. A Command Instruction issues a
computer command (possibly with parameters) to the
underlying system. A Verify Instruction compares a
specific telemetry item to a target value. If the
comparison is TRUE the instruction succeeds and
execution continues. If the comparison is FALSE then
execution halts and the procedure fails. An Ensure
Instruction is similar to a Verify Instruction except that
if the comparison fails a command is given to the
underlying system. A Wait Instruction halts execution
either for a specified period of time or until a Boolean
expression becomes TRUE. The Call Procedure
Instruction calls another procedure using the procedure
identifier and passes any required parameters. The
Call Procedure Instruction can be blocking, meaning
that the calling procedure halts execution until the
called procedure is finished or non-blocking, in which
case both procedures execute simultaneously. The Call
Function Instruction calls a user-defined function
running on the underlying system. A Manual
Instruction is used for commands that need to be
performed by a human, that is, they require manual
contact. This instruction simply contains text that is
displayed to the user. An Input Instruction acquires
data from a user (or other source) and assigns it to a
local variable in the procedure. Each instruction can
also have Automation Data that controls its execution.

3.5. Automation Data
Automation Data is used to control execution in PRL.
Automation Data includes a pair of gating conditions
called PreConditions and PostConditions. These are

Boolean expressions that must evaluate to TRUE
before execution of the procedure, step or instruction
begins and after execution ends or the procedure
execution fails. Automation Data also includes a pair
of wait conditions called StartConditions and
EndConditions. These are also Boolean expressions
that must evaluate to TRUE before execution can begin
and end. If these conditions evaluate to FALSE then
execution waits until they become TRUE. Automation
Data also includes InvariantConditions that are
Boolean expressions that must remain TRUE
throughout execution of the procedure, step or
instruction or execution fails. Automation Data also
includes a description of the resources necessary to
execute the procedure, step or instruction. This can be
used by a planner to resolve conflicts in concurrent
execution. Automation Data can apply at the
procedure, step or instruction level.

4. PRL and other execution languages
PRL represents operations for both humans and
automation. It was developed after extensively
studying existing execution languages that were
developed in automated robotics research, and also
procedures currently used in human space flight
operations. In particular, many PRL constructs come
from execution languages such as PLEXIL or RAPS.
We have also implemented translators from PRL to
PLEXIL and RAPS. In this section we compare PRL
with two other popular execution languages.

4.1. PLEXIL
 The Plan Execution Interchange Language (PLEXIL)
[1] is a language for representing plans for automation.
It has been used to operate rovers in a simulation of a
lunar robotic site survey, and has been used to
demonstrate automation for International Space Station
(ISS) operations. Like PRL, PLEXIL's core form is
represented in XML, and XML-based technologies are
used extensively in its specification, implementation,
and verification.
 PLEXIL’s structure is simpler than that of PRL. In
PLEXIL a plan is represented as a tree of uniform
structures called nodes, with only one means of
composition: internal list nodes simply aggregate their
children. In contrast, PRL has a heterogeneous mix of
structures, which includes a variety of composable
blocks and a large instruction set, with a specific
nesting order. Yet both languages represent a plan as a
hierarchical decomposition of tasks: high level tasks
are closer to the root node (or procedure level), while
leaf nodes (or instructions) are primitive actions such
as assigning to a local variable or sending a command
to hardware.

 A major difference between PRL and PLEXIL is
found in their execution logic. The execution of
PLEXIL is entirely condition driven. Each node
contains a set of conditions that enable and govern the
node's execution and outcome. These condition-driven
semantics, which allow a natural representation of
concurrency and event-driven monitoring, were
adopted by PRL, but only as a secondary control
mechanism. The primary means of control in PRL is
conditional branching at the step level. Each step
specifies either the next step(s) to which control may
transfer, or a mode in which to immediately exit the
procedure.
 The simplicity of PLEXIL's structure and control
logic extends naturally to both its execution semantics
and implementation. The execution of PLEXIL is
defined by an elegant formal framework, which also
proves useful properties of the language [2]. The
essence of the PLEXIL executive (plan interpreter) is
implemented in several hundreds of lines of C++ code.
At the same time, PLEXIL lacks PRL's human-centric
expressiveness of plans, which includes an application
domain oriented ontology, features for interacting with
visual displays, and support for adjustable autonomy.
Unlike PRL, PLEXIL is not a practical user
programming language for substantial procedures or
plans, and is more suitable as a target language for
planners or translators.
 With much success, PRL procedures have been
automatically translated into PLEXIL plans and
executed by the PLEXIL executive, thus making the
two languages highly complementary. The translator,
which is written in the XML transformation language
XSLT, performs at its highest level the straightforward
mapping of PRL constructs into PLEXIL nodes shown
in Figure 1. The complexity of translation resides
mainly in two areas, the translation of PRL's control
flow, and the "instrumentation" of the PLEXIL plan
needed to support adjustable automation.

Figure 1: PRL to PLEXIL translation

PRL's branching (which occurs between steps only)
is translated into a node enabling and disabling
mechanism wherein a node representing a given step
has a start condition formed in part from a composition
of the branching conditions in all steps that branch to
the given step. Furthermore the node’s execution is
disabled at all but these occasions to fully heed the
procedure's specified control flow. Figure 2 illustrates
the resulting PLEXIL node structure.

Figure 2: PRL branching in PLEXIL

Adjustable autonomy is achieved by executing
procedure elements with respect to their assigned level
of autonomy, or LOA. The translation from PRL to
PLEXIL adds constructs to acquire LOA in a manner
similar to any other operation performed by PLEXIL.
In particular, the PLEXIL plan sends queries to an
LOA server for a given node and executes the node
accordingly. For example, when executing a node X
representing a given step, if the LOA for this step is
consent, another node that issues a command querying
the user for consent is executed, and a confirmation
enables the execution of X. Figure 3 illustrates the
resulting PLEXIL node structure.

Figure 3: Adjustable autonomy in PLEXIL

4.2. RAPS and APEX
The Reactive Action Package system (RAPs) [3] and
Apex [4] were designed to execute predefined AI plans
reactively. RAPs and Apex are similar enough for the
following discussion that we will use the RAPs system
as the exemplar. Reactive AI plans are decomposable
into executable code, have expected world states to be
achieved, preconditions and post-conditions for each
task, and detect when the plan is failing and invoke
contingency plans. A procedure is a simple plan, that
is, a set of steps executed in a defined order to
accomplish a goal. As such, PRL can represent such
plans and a RAPs (or Apex) exec can execute them.
Indeed, we have developed a PRL to RAPs translator
and have translated and executed a number of PRL
procedures based on actual NASA procedures.

The one drawback of PRL in this regard is that the
semantics of procedure execution require that all steps
be tied to the same parent procedure. In RAPs, any
group of instructions is a procedure (a RAP). So at a
choice point in RAPs, each branch invokes another
RAP and the parent RAP is finished. In order to keep
the parent-child continuity that PRL requires, the top
level RAP resulting from a PRL translation is a large
execution tree of all the paths that could result from all
of the choice points. This requires that the RAP

interpreter maintain this tree until the final path
through it has been realized.

Beyond this problem, there are two aspects of
executing AI plans reactively that stretch the
capabilities of the current PRL language to be executed
by a RAPs exec. Both have to do with the fact that
beyond executing linear plans, RAPs is reactive, that
is, the order of execution of any instruction is
dependent at any moment on the dynamic state of the
world.

The first aspect of reactivity that is difficult to
achieve in PRL is the ability to handle concurrent
execution. AI plans are usually only partially ordered
and the final execution order of their steps is situation-
dependent. The current PRL makes unordered
execution difficult to manage. This is especially
apparent with regard to failure. RAPs has the ability to
detect failures and to invoke alternative plans based on
the type of failure. For example, if a step fails by
timing out before achieving its goal, RAPs may simply
re-invoke the procedure. RAPs can also encode more
than one way (method) to achieve a result. If the first
method fails, the RAPs interpreter will invoke an
alternative depending on the cause of the failure.
There is little support in the current PRL for this kind
of reactive control.

The other aspect of reactivity involves the way one
develops plans to be executed by RAPs. One usually
starts by defining a set of primitives that command
objects in the physical world and obtain telemetry from
them, for example, a robot_move to a set of
coordinates with a data monitor that watches the
robot's position. From these we can develop a higher-
level procedure for the robot to visit a series of
waypoints. Assuming the robot has an arm with an
end-effector, one might also have primitives to move
the arm to a pose and to track the arm's movement as
well as to grasp and ungrasp objects. From these one
could develop a pick-and-place procedure. Combining
the two higher-level procedures, one could then build a
top-level procedure that goes to various locations to
collect soil samples.

But each sub-procedure with which the top-level
procedure is composed is reactive. If the pick-and-
place sub-procedure fails, the top-level procedure can
try again, skip the object and move to the next
waypoint or fail altogether. While it is possible to
construct procedures from other procedures in PRL, it
does not provide the degree of control over the
activation of sub-procedures that is provided by RAPS.

Finally, both RAPs and Apex support the concept of
monitors, that is, procedures which “wakeup”
periodically, check the world for certain states -- e.g., a
fire monitor -- and go back to “sleep”. These
procedures never "finish" in the traditional sense of

procedure completion. PRL has as of yet no constructs
for easily defining such monitors.

Figure 4: An ISS EPS Procedure

5. PRL in action
We have used PRL in two domains at NASA Johnson
Space Center. The first domain is procedures to
control the International Space Station. The second
domain is procedures in the cockpit of a lunar surface
robot.

5.1. ISS Application
The ISS has thousands of procedures that are used for
control and troubleshooting. Figure 4 shows the firswt
page of an actual ISS procedure for configuring an
electrical power system component. This particular
procedure takes in a single parameter (X) that is the
specific component that is to be configured.
Commands (cmd) are issued on the component.
Verifies (√) are performed on telemetry coming from
the component. The second step issues a series of
commands to the component in a loop (not shown in
the figure). On ISS this procedure is executed
manually by crew members who issue commands
through a command and control interface (the various

‘sel’ instructions in the procedure are navigations
through the interface).

We have re-authored this particular ISS procedure
into PRL. This requires embedding the actual
computer commands and telemetry in the procedure so
that it can potentially be executed autonomously. Here
is PRL pseudo-code for the first step of the procedure:

Procedure
 Parameters
 id=“X” externalType=“RPCM”

parameterType=“In”
 LocalVariables
 id=“Y” externalType=“RPC”
 ExitModes
 id=“exit_success” Message=“Procedure exited

successfully”
 id=“exit_verify_failed” Message=“Procedure failed on

 verify”
 ProcedureTitle
 name=“RPCM Power On Reset” number=“5.420”

id=“proc_5420”

 Step id=“step_1” title=“Configuring RPCM after powerup”
 OrderedBlock id=“block_1”
 CommandInstruction id=“instr_1”
 Description “cmd [X] Common Clear”
 CommandIdentifier X.RPCMCommonClear
 VerifyInstruction id=“instr_2”
 ExitModeReference=“exit_verify_fail”
 Description “Verify [X] Power On Reset -- blank”
 Value X.PowerOnReset
 Operator “equal”
 TargetValue “blank”
 GotStep stepRef=“step_2”

This PRL file contains a parameter passed into the
procedure of type RPCM and a local variable of type
RPC. An RPCM is a power module on ISS and an
RPC is a switch in that power module. There are
dozens of RPCMs on ISS that can all be configured
with this same procedure. The parameter, X, specifies
which RPCM is being configured in this particular
instance. Exit modes provide messages out of the
procedure when it exits. In this case there are two, one
for a successful exit and one if a verify fails. The
pseudo-code shows one step of the procedure. The
stem has one command instruction and one verify
instruction. The command instruction has an identifier
that needs to be created at run-time since the command
needs to go to the correct RPCM. The verify
instruction compares a telemetry value with a target
value using an operator.

As an experiment, the full PRL file representing ISS
procedure 5.420 was translated into PLEXIL and
executed using the PLEXIL Executive (see Section
4.2) against a simulation of the ISS Electrical Power

System (EPS). A procedure display (see Figure 5) and
associated tools provided execution context to the end
user.

5.2. Robotic Application
PRL has also been used to represent procedures
running on a cockpit to command autonomous robots
at a distance. In these cases the PRL specified various
start-up and shut-down procedures and served to
orchestrate robot activities. Low-level, closed-loop
control of the robot was on-board and activated by the
procedures. Here is an example of a robotic PRL in
pseudo-code:

Procedure
 Parameters
 id=“X” dataType=“real” parameterType=“In”
 id=“Y” dataType=“real” parameterType=“In”
 id=“A” dataType=“real” parameterType=“In”
 ExitMode
 id=“exit_succeed” Message=“Succeeded”
 id=“exit_failed” Message=“Failed”
 id=“exit_cancelled” Message=“Cancelled”

 ProcedureTitle
 name=“ DRIVE TO XYA” number=“100”

id=“proc_100”

 Step id=“step_1” title=“Send a command to the robot to

 move to the specified location”
 OrderedBlock id=“block_1”

CommandInstruction id=“instr_1”
 AutomationData

 EndConditions timeout-“20 seconds”
 CommandQueueStatus = 2 OR
 CommandQueueStatus = 5 OR
 CommandQueueStatus = 6 OR
 CommandQueueStatus = 7
 PostConditions

 exitModeReference="exit_failed"
 CommandQueueStatus = 6

 Description “Send CCmd::DriveToXYA() then
wait for command to succeed”

 CommandIdentifier DriveToXYA
 Parameters X, Y, A

 ExitProcedure exitModeReference="exit_succeeded"

This procedure has three parameters – the (X,Y)
location for the robot to drive to and its final
orientation (A). There is one step with one ordered
block that has a single instruction. The instruction has
Automation Data. Specifically, there is an end
condition that says that this instruction is not finished
until the value of CommandQueueStatus is either 2, 5,
6, or 7. This means that the execution status of this
instruction is not complete until this end condition is
met or until the timeout of 20 seconds passes, after

which the instruction fails. There is also a post
condition that the CommandQueueStatus be equal to 6
or the instruction (and procedure) fails with exitMode
failed. The single command instruction calls a system
command (DriveToXYA) with the given parameters.
After Step 1 is finished the procedure exits with
exitMode succeeded.

This (and other) procedures were executed on the
cockpit for the Centaur robot at NASA Johnson Space
Center. The cockpit user saw a procedure display as
shown in Figure 5. The display could be used to select
procedures for execution and to monitor their status.
The executive dispatched commands to the robot over
a network connection and monitored for telemetry.

6. Conclusions and future work
PRL is in the early stages of being investigated by the
Constellation program of use in future missions. The
feedback has been positive so far. One improvement
we are considering is creating a more modular
language. Currently there is one schema that contains
all of the PRL constructs. For some simple
applications (e.g., early Orion operations) not all PRL
constructs will be necessary. Also, robotic operations
often require different constructs than single vehicle
operations. Our users want the ability to load in only

the PRL constructs they need for their specific
application. We are examining how we can create a
core PRL that is then extended to accommodate
different operational scenarios.

We are also exploring adding a greater ability to
deal with concurrency in PRL. Since many current
procedures are performed by a single human
concurrency is not a real requirement. However, has
missions become more complex and automated having
multiple procedures being executed at the same time
will be more likely. In these cases we need to address
resource contention and timing constraints between
procedures.

PRL is only as useful as the tools that are available
for it. We are building a Procedure Integrated
Development Environment (PRIDE) for authoring
procedures in PRL, executives that execute PRL (or
translations of PRL), displays that show a PRL file to a
human and show its execution status and procedure
support services that handle human interaction with the
procedure during execution. PRL’s advantage is that it
provides a single representation can be used by all of
these tools, thus streamlining the authoring,
verification, validation and execution of procedures.

Figure 5: The Procedure Display for PRL

7. Acknowledgments
A large group of people of contributed to PRL
including Robert Phillips (L3Com/NASA JSC), Michel
Izygon (Tietronix/NASA JSC), Wes White
(Tietronix/NASA JSC), Arthur Molin (SKA/NASA
JSC), Tam Ngo (NASA JSC), Ari Jonsson (NASA
ARC), Chuck Fry (Perot Systems/NASA ARC),
Jeremy Frank (NASA ARC), Scott Bell (SKA/NASA
JSC), Tod Milam (SKA/NASA JSC), Bebe Ly (NASA
JSC), Ken McMurtry (Tietronix/NASA JSC), Kevin
Kusy (SKA/NASA JSC), Cesar Munoz (NASA
LaRC), Tony Barrett (JPL) and Chad Keeton
(Tietronix/NASA JSC).

8. References
[1] V. Baskaran, M. Dalal, T. Estlin, C. Fry, M. Iatauro, R.
Harris, A. Jonsson, C. Pasareanu, R. Simmons, V. Verma,
“Plan Execution Interchance Language (PLEXIL) Version
1.0”, NASA Technical Memorandum, Nov 2007.

[2] G. Dowek, C. Munoz, C. Pasareanu, “Formal Semantics
of a Synchronous Plan Execution Language”, Workshop on
Planning and Plan Execution for Real-World Systems:

Principles and Practices for Planning in Execution at the
International Conference on Automated Planning and
Scheduling (ICAPS), 2007.

[3] Firby, R.J., “An Investigation into Reactive Planning in
Complex Domains,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1987.

[4] Freed, M.J, “Managing Multiple Tasks in Complex,
Dynamic Environments,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1998.

[5] Schreckenghost, D., R. P. Bonasso, D. Kortenkamp, S.
Bell, T. Milam, C. Thronesbery, “Adjustable Autonomy with
NASA Procedures,” in Proceedings International
Symposium on Artificial Intelligence, Robotics and
Automation for Space (i-SAIRAS), 2008.

