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Abstract 

 
NASA’s Exploration missions will require more 

effective use of human resources in space and on 
Earth. The use of automation to perform routine or 
hazardous tasks can free humans for other tasks. But 
increased use of automation must be done without 
compromising human safety or introducing 
unnecessary risk. At JSC we have developed 
technology for incrementally increasing the level of 
system autonomy. Our approach is based on the 
electronic procedures used for crewed operations. We 
provide assistive software for humans to adjust 
whether a procedure step is executed manually or 
automatically. This permits a gradual shift to more 
automated operations. We have evaluated our 
adjustable autonomy technology in two NASA domains 
– procedures for the International Space Station and 
procedures for remote supervision of robots. In this 
paper we describe our approach to adjustable 
autonomy, compare it to other approaches, and 
summarize the results of using it in NASA applications. 
 
1. Introduction 
 

NASA’s Exploration program poses challenging 
new missions, such as a permanent lunar outpost and 
manned exploration of Mars. Fulfilling such missions 
will require more effective use of human resources in 
space and on Earth. The use of automation to perform 
routine or hazardous tasks typically performed by 
humans has potential to make more effective use of 
humans in space operations. But increased use of 
automation must be done without compromising 
human safety or introducing unnecessary risk.  

At JSC we have developed technology for 
increasing the level of system autonomy as a person 
gains experience with and trust in automated 

operations. Our approach is to provide support 
software for humans to adjust whether a step in a 
procedure is executed manually or automatically. This 
differs from other approaches to adjustable autonomy 
in that the designation of whether a step is manual or 
automated is under human control. This adjustment is 
constrained by what can be automated (based on 
available instrumentation) and what should be 
automated (based on flight rules and operational 
protocols). We support three levels of autonomy 
(LOA): manual execution by a person, automatic 
execution with human consent, and automatic 
execution when preconditions are met. These levels 
can be adjusted at any time prior to the execution of the 
procedure. These adjustments do not require 
modification and consequent recertification of the 
procedure because the procedure includes the 
knowledge needed for both manual and automated 
execution. For manual execution, knowledge is 
captured to support tracking what instruction a person 
is performing, prompting a person to take action, and 
annotating the presentation of instructions customized 
to both the user and the situation. For automated 
execution, knowledge is captured about the necessary 
pre-conditions for a step, the commands to be 
dispatched, and the expected effects of these 
commands. We use the Procedure Representation 
Language (PRL) to represent this knowledge [11].  

We have applied our adjustable autonomy 
technology in two NASA domains – procedures for the 
International Space Station (ISS) and procedures for 
remote supervision of the Centaur robot [17]. We have 
evaluated our technology on procedures for the ISS 
power distribution system with a high fidelity 
simulation. We also have evaluated our technology on 
procedures for the supervisor of a Centaur robot 
operating from the JSC Cockpit with a 5-10 second 
time delay. In this paper we describe our approach to 



adjustable autonomy, compare it to other approaches to 
adjustable autonomy, and summarize the results of 
using it in NASA applications. 
 
2. Approach 
 

For manned space flight, procedures define the 
instructions for how to manage spacecraft systems. 
This includes nominal configuration and control of 
systems, as well as diagnosis and fault mitigation. 
Procedures for the International Space Station (ISS) 
encode knowledge in the procedure using the 
eXtensible Markup Language (XML). It is expected 
that the Constellation spacecraft will use a similar 
approach. For the ISS, this knowledge defines what 
information should be presented to operations 
personnel, and how it should be presented to comply 
with procedure standards. All actions in these 
procedures are manually executed using system 
displays separate from the procedure display.  

We have defined an approach for using procedural 
knowledge to provide adjustable autonomy for 
spacecraft systems. To ensure that we capture the 
knowledge needed to automate actions, we have 
extended the XML schema for ISS procedures to 
support capturing this knowledge when procedures are 
authored. Once this knowledge is represented in XML, 
a Level of Autonomy (LOA) is assigned to the actions 
in a procedure. The LOA setting designates whether a 
person should take the action or the action should be 
performed automatically. Adjustable autonomy is 
supported by providing a means to change these LOA 
settings during operations. 

In the remainder of this section we summarize the 
changes to PRL to capture automation information and 
describe how we combine this information with LOA 
settings to support adjustable autonomy. 

 
2.1. Procedure Representation Language 

 
At JSC, we are investigating how to extend the 

XML used to represent current procedures to include 
knowledge needed to automate the execution of 
procedure steps and instructions [12]. The revised 
XML is called the Procedure Representation Language 
(PRL). A PRL procedure consists of one or more steps. 
Each step includes one or more instructions, grouped 
into blocks. Steps can be linked serially (e.g., go to 
step 2 after step 1) or conditionally (e.g., if switch is on 
go to step 2 else go to step 3). Instructions within a 
block can be sequenced using a variety of control flow 
constructs including (1) if-then, (2) for-each, and (3) 
repeat-while. Instructions define operational actions 
including: (1) command a spacecraft system, (2) verify 

a telemetry value, (3) execute another procedure, and 
(4) get information from a person. See Kortenkamp 
[11] for a description of PRL.  

The following extensions in PRL are needed to 
support automatic execution of a step or instruction: 
• Linking procedure actions to spacecraft telemetry 

and commands  
Telemetry and Commands are referenced in procedures 
today by specifying (1) a navigation path to a system 
display page that shows the item, and (2) a text string 
describing the action to be taken on that screen. 
Automatic execution of these actions requires linking 
the action description to a mechanism for retrieving the 
required telemetry or dispatching the required 
command. For ISS, this means identifying the 
telemetry or command identifier (called a PUI, 
Program Unique Identifier) and specifying any 
command arguments needed. These arguments can be 
assigned by a person or can be derived from telemetry. 
We have extended PRL instructions to include a 
DataReference tag that identifies the command or 
telemetry needed to perform an action in an instruction. 
• Identifying the conditions that must hold to move 

between steps 
Procedures are constructed as sequences of steps, 
where each step corresponds to one or more actions. 
The order in which steps are sequenced in the 
procedure can result (1) from state dependencies 
between steps (e.g., close the isolation valve before 
opening the flow valve) or (2) from the need to make 
these sequences easier for humans to learn and 
perform. The knowledge necessary to distinguish 
between these two cases is needed when automating 
the procedure steps but is not captured in procedures 
today. Instead, such knowledge is passed on to the 
operations personnel during training. PRL has added 
the AutomationData tag that defines pre-conditions and 
post-conditions on actions. When the appropriate 
action cannot be determined at authoring time, the 
BranchingCondition tag defines how to select the 
appropriate action when the procedure is executed. 

Once the procedure encodes this additional 
knowledge about command and data referencing (via 
the DataReference tag) and conditions on actions (via 
the AutomationData and BranchingCondition tags), it 
is possible to derive software for taking these actions 
automatically from the procedure.  

We have used PRL to support our approach of 
adjustable autonomy through procedures. When 
authoring the procedure, we identify whether a step can 
be automated and, if so, whether a step should be 
automated. Physical constraints on the automation of 
procedures include (1) inadequate instrumentation to 
automate a command or detect the effects of a 
command, and (2) limited response times not possible 



with the procedure infrastructure (e.g., millisecond 
response times are best implemented in flight 
software). Mission constraints (e.g., flight rules) on the 
automation of procedures include (1) actions always 
requiring human approval before execution, and (2) 
actions best suited to human decision making.  

These constraints can be added to the PRL for each 
instruction using the executionMode attribute. Possible 
values for the executionMode include (1) Manual – the 
action should only be performed by a person, (2) 
Automated – the action should only be performed 
automatically by software, and (3) Mixed – the action 
can be performed either by a person or by software. 

Manual actions are accomplished via PRL 
InputInstructions, which provide the user with a 
statement of what needs to be done and a means for 
confirming when it has been done. Automated actions 
are accomplished via a variety of PRL instruction types 
such as a CommandInstruction that sends a command 
to the spacecraft or a VerifyInstruction that monitors 
for a telemetry value. The instruction type used 
depends upon the action to be taken. Kortenkamp [11] 
describes the actions available in PRL. When an action 
is designated as Mixed, it is necessary to provide two 
methods for accomplishing it – one manual and one 
automated.  

 
2.2. Adjustable Autonomy 

 
Our approach to adjustable autonomy is to provide 

assistive software that guides the performance of a 
procedure written in PRL based on the Level of 
Autonomy (LOA) settings defined for the procedure, 
its steps, and its instructions. As described in the 
previous section, constraints on the LOA settings are 
specified when the procedure is authored. The LOA 
settings can then be adjusted within these constraints 
when the procedure is executed. We have implemented 
three LOA settings in our initial approach: 
• Manual: the action associated with the current 

instruction is performed by a person using systems 
outside the adjustable autonomy software, 

• Automated: the action associated with the current 
instruction is performed automatically by the 
adjustable autonomy software, including telemetry 
monitoring and command dispatching, and 

• Consent: the action associated with the current 
instruction is performed by the adjustable 
autonomy software after receiving human 
approval 

The current instruction is identified by the 
adjustable autonomy software as the instruction in the 
current step that has met the instruction pre-conditions 
and start-conditions of the instruction but has not yet 
met the instruction end-conditions. Likewise the 

current step is identified as the step that has met the 
step pre-conditions and start-conditions of the step but 
has not yet met the step end-conditions. 

The LOA can be assigned for a procedure, a step, an 
instruction, or a combination of settings at these 
different levels of the procedure hierarchy. Currently 
we do not support setting a LOA for the procedure 
block. If no LOA setting has been specified for a 
procedure element, the LOA setting at the level above 
it is used (e.g., if no LOA for an instruction, the LOA 
setting for the step containing it is used). If no LOA 
setting has been specified at any level above an 
element, the LOA setting is considered undefined. 

The LOA settings are represented using XML, 
based on an XML schema. These settings are linked to 
procedures, steps, and instructions using the same 
identifiers defined in the PRL procedure. The 
following example defines a CONSENT LOA setting 
for step_10 in procedure 3209: 

<procedure xmlns="http://www.traclabs.com/....." 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 
  xsi:schemaLocation="http://www.traclabs.com/..... 

./LOA.xsd" id="3209"> 
        <step id="step_10"> 
                <loa loa="CONSENT" /> 
        </step> …… 
We have developed a prototype to evaluate our 

approach to adjustable autonomy. This prototype 
provides the following capabilities: 
• Procedure Executive: steps through the procedure 

and takes action based on the LOA setting. 
Actions taken for automated instructions include 
monitoring for a value in telemetry and 
dispatching a command to a spacecraft system. 
Actions taken for manual instructions include 
asking the user for information needed to 
determine the next action to take (e.g., do you 
smell smoke) and asking the user to respond when 
a manual task is done.  

• Procedure Support Software: tracks the state of 
procedure execution for display to the user and 
routes queries from the Procedure Executive to the 
designated users.  

• Procedure Display: provides a user interface for 
monitoring the execution of automated 
instructions and for interacting with the Procedure 
Executive for manual or consent instructions. 

• LOA Server: distributes LOA settings to the 
Procedure Executive and the Procedure Display, 
including updates to settings made from the 
display just prior to executing the procedure.  

Figure 1 shows the adjustable autonomy architecture.  
 



 
These LOA values are served to the Procedure 

Executive and the Procedure Display by a LOA server. 
The LOA server is initialized from an XML file with 
default settings for procedures. As described 
previously, if a LOA setting is requested and nothing 
has been specified for it, the server attempts to derive a 
LOA setting by using the setting at the level above the 
requested element (e.g., step LOA for an unspecified 
instruction LOA or the procedure LOA for an 
unspecified step LOA). If it is not possible to derive a 
setting using this approach, the empty string is returned 
indicating an undefined LOA setting. 

The LOA settings can be retrieved from the server 
by requesting all LOA settings for a procedure or by 
requesting a single setting for either a step or 
instruction within a procedure. The Procedure Display 
takes changes to a LOA setting made by the user and 
sends them as updates to the server. If the setting 
changes while the server is running, the change is 
passed to the Procedure Executive. The user then can 
save the updated settings to file if the changes should 
persist after the software is shutdown.  

For Manual steps and instructions, the adjustable 
autonomy software cues the person executing the 
procedure when it is time to take action. It prompts the 
user to indicate when the actions are complete, and 
modifies the appearance of the Procedure Display to 
reflect the state of execution (e.g., completed). It also 
provides a means for the user to exit the procedure by 
cancelling a step or instruction.  

For Automated steps and instructions, the adjustable 
autonomy software checks the conditions in the 
AutomationData, dispatches any commands within the 
step, and monitors any telemetry identified within the 
step. It informs the user when it begins to execute the 
step or instruction, and when it completes the step or 
instruction by changing the appearance of the step or 
instruction on the Procedure Display.  

For steps and instructions requiring Consent, the 
adjustable autonomy software first requests the user for 
permission to proceed with automated execution of the 
step or instruction. If permission is granted, the 
software behaves as if the step or instruction were 
designated as Automated. If permission is denied, the 
software stops executing the procedure and exits.  

The ability to adjust the LOA settings without 
having to re-author the procedure is central to our 
operations concept. We accomplish this by authoring 
the procedure to include sufficient information to 
execute the procedure instructions both manually and 
automatically, when permitted by LOA constraints 
(i.e., Mixed mode). We use the LOA settings during 
execution to select which of these methods to use.  

There are a number of advantages to this approach. 
The procedure contains the full range of manual to 
automated capability early on, even if the operational 
use of the procedure remains primarily manual, as in 
crewed operations today. This supports the gradual 
adoption of automation by permitting portions of 
procedures to be incrementally automated as users gain 
knowledge about how they want to use automation and 
as additional instrumentation becomes available. It also 
permits adjusting normally automated steps to be 
manual in special circumstances where a more active 
user involvement is desired. When changing aspects of 
the procedure to accommodate operational changes, 
both the manual and automated methods can be 
changed and certified at one time. Finally, the 
knowledge captured to automate instructions can 
improve crew situation awareness (e.g., knowledge of 
preconditions for an instruction is informative for a 
person performing the instruction). Such knowledge is 
typically captured as part of mission training today. 

 
3. Evaluation 
 
We have applied our adjustable autonomy technology 
in two NASA domains – procedures for the 
International Space Station (ISS) and procedures for 
remote supervision of the Centaur robot. We have 
evaluated our technology on procedures for the ISS 
power distribution system with a high fidelity 
simulation. We also have evaluated our technology on 
procedures for the supervisor of a Centaur robot 
operating from the JSC Cockpit. 
 
3.1. International Space Station Procedures 
 

We have developed a prototype of our adjustable 
autonomy architecture for evaluation with ISS 
procedures. We represented ISS procedures for the 
power distribution portion of the Electrical Power 
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Figure 1. Adjustable Autonomy Architecture 



System (EPS) in PRL. We executed these procedures 
using our adjustable autonomy prototype integrated 
with a high fidelity simulation of Station (ISS in a 
Box) that models flight hardware and software. We 
used this prototype to evaluate the use of adjustable 
autonomy for responding when a power distribution 
switch trips unexpectedly. In this situation, any system 
downstream of the tripped switch loses power. The 
immediate response is to mitigate fault effects and 
diagnose the problem using malfunction procedures. 
The longer term response is to reconfigure or repair the 
system to fix the problem. We implemented both 
malfunction and checklist procedures for ISS EPS in 
PRL.  

We used this prototype to evaluate the following 
hypotheses about our approach to adjustable 
autonomy:  
• Hypothesis 1: Procedure steps and instructions can 

be encoded in PRL with the information necessary 
to be executed either manually or automatically 

• Hypothesis 2: The LOA settings for these PRL 
procedures can be adjusted just prior to execution 
without modifying the PRL for the procedure.  

For this evaluation, we used the Reactive Action 
Package System (RAPS) [6] as the Procedure 
Executive. Because RAPS does not interpret PRL 
directly, we developed a translator that uses the 
semantics of PRL to produce RAP code from a PRL 
file. We also have translated these ISS procedures into 
the PLEXIL language [19] in a similar fashion. 

The LOA translation for our RAPs executive has 
both an autonomous and a manual method of execution 
for every RAP that engages the system under control 
(known as a primitive). For each RAP primitive, our 
implementation uses a LOA setting in memory to 
select the appropriate method. Since each PRL 
instruction has a corresponding RAP primitive, it is 
natural for the RAP executive to use the LOA provided 
by the LOA server to select the appropriate method. 
With the PRL semantics, we have expanded our 
approach by adding a consent method for each 
primitive that takes priority over the other two 
methods. If the LOA is Consent, the consent method is 
executed first. If consent is not obtained, the primitive 
fails. If consent is obtained then the automated method 
is executed. 

To evaluate Hypothesis 1 we encoded two ISS 
procedures using PRL: (1) power switch trip 
malfunction procedure, and (2) power switch 
reconfiguration checklist procedure. Each of these 
procedures includes methods for some steps to be 
executed either manually or automatically. The 
malfunction procedure performs initial diagnosis of the 
cause of the trip and attempts to re-close the switch, if 
it is safe to do so. The checklist procedure reconfigures 

the portion of the power distribution system affected 
by the trip to restore normal operations.  

We successfully represented both ISS EPS 
procedures using PRL. These representations included 
the information needed for both manual and automated 
execution of many of the steps in these procedures. 
Encoding methods for automatic execution required 
capturing information about the conditions to be 
checked before taking action (i.e., pre-conditions and 
start conditions) and the conditions indicating an action 
is complete (i.e., post-conditions and end conditions). 
As anticipated, we found that these conditions often are 
not expressed in current procedures, but are part of 
flight training. Incorporating adjustable autonomy into 
flight operations will require capturing such 
information during procedure authoring.  

To evaluate Hypothesis 2, we injected the power 
switch trip fault into the simulation and executed the 
power switch malfunction procedure to diagnose this 
fault and mitigate its impacts. We evaluated this case 
twice – first with all steps performed manually as done 
for Station today and second with some steps executed 
automatically. Manual steps are performed by a person 
using the ISS PCS displays connected to the ISS in a 
Box simulation. For manual steps, our software 
bookmarks the current step and prompts the person to 
indicate when the current step is complete. It also 
marks which steps have been completed successfully 
or aborted. Automatic steps are executed as soon as 
they become the current step by automatically sending 
Station commands to the ISS simulation. Our software 
also monitors available telemetry for evidence that the 
command had the intended effect. When these effects 
are observed, the step is marked complete. Consent 
steps require a person to approve their execution before 
commands are dispatched to the ISS simulation.  

For the power switch trip malfunction procedure, 
our adjustable autonomy software successfully 
performed the PRL procedure with different LOA 
settings: (1) Case 1 – LOA set to Manual for all steps, 
and (2) Case 2 – LOA set to Automated for eight of 
sixteen steps. Situated condition checking specified in 
the PRL procedures was used to identify the correct 
diagnostic actions to take, and the mitigation 
commands were performed correctly and in a timely 
manner. Anecdotal data from this experiment indicates 
that the procedure can be executed more quickly in 
case 2 where many of the telemetry checking steps are 
performed automatically. This improved performance 
time results from eliminating the need to manually 
navigate to the appropriate PCS display before 
telemetry can be observed or commands can be 
dispatched. This approach also reduces the potential 
for human error when executing this procedure.  
 



3.2. Centaur Cockpit Procedures 
 

We have developed a prototype of our adjustable 
autonomy architecture for evaluation with Centaur 
Cockpit procedures. Centaur is a humanoid robot 
developed at JSC. It combines highly dexterous 
manipulation with stereo vision and a mobile base. The 
Cockpit is a facility at JSC for supervision of robots 
like Centaur. It provides multiple computers with 
configurable software for situation awareness and 
remote commanding of robots. We developed Cockpit 
procedures for the sample retrieval task performed by 
Centaur during the Desert Research and Technology 
Study (RATS) in 2006 [9]. We integrated our 
adjustable autonomy prototype with both a simulation 
of Centaur and the actual robot. We used this prototype 
to evaluate the following hypothesis: 
• Hypothesis 1: Procedures for adjustable autonomy 

can be used to aid humans in performing 
procedures that interleave human actions with the 
actions of a remote robot 
To evaluate this hypothesis, we encoded 16 

procedures using PRL. The primitive procedures all 
dispatch automatically a single command to Centaur. 
These primitive procedures control Centaur by issuing 
task-level commands to control software (called the 
Central Commander) running onboard the robot. The 
composite procedures combine manual steps with these 
robot primitives to accomplish more complex tasks. 
Manual tasks include verifying robot availability and 
providing seed coordinates for the vision system 
tracking objects in the robot’s environment. For 
example, the user is requested to verify that the robot 
base is available for commanding. The execution of the 
procedure is paused until this action is performed. 
Once it is performed, commands to move the robot 
base are automatically dispatched. 

At the time of publication, we have evaluated five 
procedures for commanding the Centaur robot from the 
JSC Cockpit, including commands to both the upper 
and lower body of Centaur. Using our adjustable 
autonomy prototype, we demonstrated the ability to 
assist the Cockpit Supervisor in commanding Centaur 
for portions of the sample retrieval task. This 
assistance includes (1) prompting the Cockpit 
Supervisor when manual actions are needed, (2) 
collecting information from the user needed to 
construct robot commands, and (3) tracking the 
completion of robot commands and human actions to 
improve human situation awareness. 
 
4. Related Work 
 

Adjustable autonomy was introduced for 
supervisory control of robotic systems [14]. Since then, 
techniques for adjustable autonomy have proliferated 
for robotics [7, 8, 10, 18] as well as a variety of other 
fields including multi-agent systems [1, 4, 15], process 
control [13], and vehicle system control [3, 5, 16, 20]. 
Our implementation of Level of Autonomy is derived 
from the work by Bonasso et al. [2] to develop 
adjustable autonomy for supervising the Shuttle remote 
manipulator. He defines manual and automated control 
methods for each primitive task (where possible) and 
adjusts the LOA by selecting one of these methods for 
each primitive task. We have extended this approach 
by implementing additional levels derived from 
Parasuraman et al. [14] levels of autonomy (i.e., 
Consent = Level 5, computer suggests an action and 
executes that suggestion if the human approves). 

Our procedure-based approach to adjustable 
autonomy is consistent with other approaches to 
adjustable autonomy for robots [7, 8, 10, 18] in 
assigning tasks among a heterogeneous team of 
humans and robots. Similar to Fong et al. [7], we focus 
on one-to-one interaction between a person and a 
robot, while other approaches have focused on one-to-
many interaction between a person and a team of 
robots [8, 10, 18]. Heger and Singh [10] define four 
levels of autonomy, including the ability for a robot to 
ask for human assistance that is not addressed in our 
approach, to coordinate a human-robot team 
performing assembly tasks. They use Markov models 
to automatically determine the task transitions for each 
level of autonomy. Fong et al. [7] assume autonomous 
robot operation that can be adjusted when a robot 
encounters a problem or a person needs robotic 
assistance. This adjustment can be initiated by either 
the human or the robot reasoning about a model of the 
skills of team members. Using a policy-based 
approach, Sierhuis et al. [18] adjust the tasks 
performed by the human-robot team by constraining 
task complexity, execution autonomy, and obligation 
for human involvement. Our procedure-based approach 
is unique in that it assists not only the performance of 
robotic tasks at different levels of autonomy, but also 
human tasks. Assisting manual tasks is typically 
outside scope for other approaches. 

Adjustable autonomy for coordinating multi-agent 
systems has focused on strategies for dynamically 
adjusting the allocation of tasks among distributed 
software agents and humans. Scerri, et al. [15] uses 
Markov decision processes to model and reason about 
transfer of control during the execution of tasks. 
Adjustments consist of designating which agent 
performs a task and are made to improve performance. 
Barber et al. [1] associate an agent’s decision-making 
interaction style with its level of autonomy. Adjusting 



the level of autonomy corresponds to changing the 
agent’s interaction among the following levels: (1) 
command-driven – similar to our Manual, (2) 
consensus – involving both human and agent like 
Consent but giving the agent the ability to influence 
decisions, and (3) locally autonomous/master – similar 
to our Automated. This range corresponds to an 
organization adjustment that affects the degree to 
which the agent controls decision making within its 
organization. In our procedure-based approach, 
humans determine task allocations within the 
constraints on allowable transitions. This is closer to 
the policy-based approach of Bradshaw et al. [4] that 
defines categories of actions constraints (e.g., 
permitted actions, obligated actions) and adjusts these 
policies based on changes in situation and capabilities. 
Because of the close tie to human operations, our 
procedure-based approach to adjustable autonomy has 
only been used for human-system coordination, while 
many of the agent-based approaches have been used 
for system-system coordination as well. Another 
difference is that our procedure-based approach 
provides centralized coordination of agents, while 
other multi-agent approaches [1, 15] use distributed 
coordination of agents. 
 
5. Conclusions 

 
We have defined an approach for providing adjustable 
autonomy using electronic flight procedures. We have 
developed software for humans to adjust whether a 
step in a procedure is performed manually or 
automatically, based on the LOA setting. The LOA is 
set by a person and constrained by flight rules and the 
available instrumentation. We initially implemented 
three LOA settings: manual, consent, and automated. 
These settings were determined by interviewing flight 
controllers that execute procedures on current 
spacecraft systems. We have evaluated our approach in 
two domains: ISS power procedures and procedures for 
supervising robots.  

Using ISS procedures in a flight-like environment, 
we demonstrated the ability to define and execute a 
procedure in PRL with steps and instructions that can 
be performed either by a person or automatically. By 
changing the LOA settings just prior to execution, we 
used the same procedure to successfully perform 
operational tasks both manually and automatically. 
Because adjusting the level of procedure autonomy did 
not require modifying the procedure content, this 
approach does not require costly recertification of 
procedures when increasing the Level of Autonomy for 
a spacecraft system. 

Using Cockpit procedures remotely with the 
Centaur robot, we demonstrated the ability to define 
electronic procedures for joint human-robot tasks. 
These procedures encode knowledge required to both 
guide a person through manual tasks and to command a 
robot to perform its tasks automatically. By providing 
the ability to require human consent before dispatching 
a robot command, we can shift a person’s attention to 
an ongoing task to confirm that previous actions were 
successful and that the robot is ready to proceed with 
the next action. This supports both safe operations and 
improves situation awareness of robot autonomy.  

There are some key differences between the 
adjustable autonomy prototype for Centaur and the 
adjustable autonomy prototype for ISS. Procedures for 
complex Centaur tasks are built up from one or two 
step “primitive” procedures. These primitives are 
defined to be reusable in multiple “composite” 
procedures. Procedures for complex ISS tasks, 
however, are not built from such reusable primitive 
procedures. While some ISS procedures do link to 
other procedures, there is much less hierarchy in ISS 
procedures than in Centaur Cockpit procedures and 
similar steps are repeated instead of encapsulated in a 
reusable primitive. A second difference between the 
Centaur Cockpit procedures and the ISS procedures 
relates to the confirmation of command effects before 
sending subsequent commands. For the ISS, it is 
common practice to confirm that a command has had 
the intended effect before dispatching the next 
command. For Centaur, we are investigating an 
approach where multiple commands are dispatched and 
queued for execution without such confirmation of 
effects. This approach is intended to reduce command 
latency over time delay [17]. Finally, the prototype for 
Centaur Cockpit procedures uses executive software 
that natively executes PRL instead of translating PRL 
to another executive language, as done in the prototype 
for ISS procedures. This PRL Executive was 
developed at JSC. 

Based on our evaluation, we conclude that 
automation of electronic procedures can be used to 
implement adjustable autonomy for mission tasks 
normally performed by humans.  
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