
Adjustable Autonomy with NASA Procedures

Debra Schreckenghost, R. Peter Bonasso, David Kortenkamp
TRACLabs, 1012 Hercules, Houston, TX, USA 77058

ghost@ieee.org, r.p.bonasso@nasa.gov, korten@traclabs.com

Scott Bell, Tod Milam, Carroll Thronesbery
S&K, 201 Flint Ridge Plaza, Suite 102, Webster, TX 77598

scott@traclabs.com, tmilam@traclabs.com, carroll.g.thronesbery@nasa.gov

Abstract

NASA’s Exploration missions will require more

effective use of human resources in space and on
Earth. The use of automation to perform routine or
hazardous tasks can free humans for other tasks. But
increased use of automation must be done without
compromising human safety or introducing
unnecessary risk. At JSC we have developed
technology for incrementally increasing the level of
system autonomy. Our approach is based on the
electronic procedures used for crewed operations. We
provide assistive software for humans to adjust
whether a procedure step is executed manually or
automatically. This permits a gradual shift to more
automated operations. We have evaluated our
adjustable autonomy technology in two NASA domains
– procedures for the International Space Station and
procedures for remote supervision of robots. In this
paper we describe our approach to adjustable
autonomy, compare it to other approaches, and
summarize the results of using it in NASA applications.

1. Introduction

NASA’s Exploration program poses challenging
new missions, such as a permanent lunar outpost and
manned exploration of Mars. Fulfilling such missions
will require more effective use of human resources in
space and on Earth. The use of automation to perform
routine or hazardous tasks typically performed by
humans has potential to make more effective use of
humans in space operations. But increased use of
automation must be done without compromising
human safety or introducing unnecessary risk.

At JSC we have developed technology for
increasing the level of system autonomy as a person
gains experience with and trust in automated

operations. Our approach is to provide support
software for humans to adjust whether a step in a
procedure is executed manually or automatically. This
differs from other approaches to adjustable autonomy
in that the designation of whether a step is manual or
automated is under human control. This adjustment is
constrained by what can be automated (based on
available instrumentation) and what should be
automated (based on flight rules and operational
protocols). We support three levels of autonomy
(LOA): manual execution by a person, automatic
execution with human consent, and automatic
execution when preconditions are met. These levels
can be adjusted at any time prior to the execution of the
procedure. These adjustments do not require
modification and consequent recertification of the
procedure because the procedure includes the
knowledge needed for both manual and automated
execution. For manual execution, knowledge is
captured to support tracking what instruction a person
is performing, prompting a person to take action, and
annotating the presentation of instructions customized
to both the user and the situation. For automated
execution, knowledge is captured about the necessary
pre-conditions for a step, the commands to be
dispatched, and the expected effects of these
commands. We use the Procedure Representation
Language (PRL) to represent this knowledge [11].

We have applied our adjustable autonomy
technology in two NASA domains – procedures for the
International Space Station (ISS) and procedures for
remote supervision of the Centaur robot [17]. We have
evaluated our technology on procedures for the ISS
power distribution system with a high fidelity
simulation. We also have evaluated our technology on
procedures for the supervisor of a Centaur robot
operating from the JSC Cockpit with a 5-10 second
time delay. In this paper we describe our approach to

adjustable autonomy, compare it to other approaches to
adjustable autonomy, and summarize the results of
using it in NASA applications.

2. Approach

For manned space flight, procedures define the
instructions for how to manage spacecraft systems.
This includes nominal configuration and control of
systems, as well as diagnosis and fault mitigation.
Procedures for the International Space Station (ISS)
encode knowledge in the procedure using the
eXtensible Markup Language (XML). It is expected
that the Constellation spacecraft will use a similar
approach. For the ISS, this knowledge defines what
information should be presented to operations
personnel, and how it should be presented to comply
with procedure standards. All actions in these
procedures are manually executed using system
displays separate from the procedure display.

We have defined an approach for using procedural
knowledge to provide adjustable autonomy for
spacecraft systems. To ensure that we capture the
knowledge needed to automate actions, we have
extended the XML schema for ISS procedures to
support capturing this knowledge when procedures are
authored. Once this knowledge is represented in XML,
a Level of Autonomy (LOA) is assigned to the actions
in a procedure. The LOA setting designates whether a
person should take the action or the action should be
performed automatically. Adjustable autonomy is
supported by providing a means to change these LOA
settings during operations.

In the remainder of this section we summarize the
changes to PRL to capture automation information and
describe how we combine this information with LOA
settings to support adjustable autonomy.

2.1. Procedure Representation Language

At JSC, we are investigating how to extend the

XML used to represent current procedures to include
knowledge needed to automate the execution of
procedure steps and instructions [12]. The revised
XML is called the Procedure Representation Language
(PRL). A PRL procedure consists of one or more steps.
Each step includes one or more instructions, grouped
into blocks. Steps can be linked serially (e.g., go to
step 2 after step 1) or conditionally (e.g., if switch is on
go to step 2 else go to step 3). Instructions within a
block can be sequenced using a variety of control flow
constructs including (1) if-then, (2) for-each, and (3)
repeat-while. Instructions define operational actions
including: (1) command a spacecraft system, (2) verify

a telemetry value, (3) execute another procedure, and
(4) get information from a person. See Kortenkamp
[11] for a description of PRL.

The following extensions in PRL are needed to
support automatic execution of a step or instruction:
• Linking procedure actions to spacecraft telemetry

and commands
Telemetry and Commands are referenced in procedures
today by specifying (1) a navigation path to a system
display page that shows the item, and (2) a text string
describing the action to be taken on that screen.
Automatic execution of these actions requires linking
the action description to a mechanism for retrieving the
required telemetry or dispatching the required
command. For ISS, this means identifying the
telemetry or command identifier (called a PUI,
Program Unique Identifier) and specifying any
command arguments needed. These arguments can be
assigned by a person or can be derived from telemetry.
We have extended PRL instructions to include a
DataReference tag that identifies the command or
telemetry needed to perform an action in an instruction.
• Identifying the conditions that must hold to move

between steps
Procedures are constructed as sequences of steps,
where each step corresponds to one or more actions.
The order in which steps are sequenced in the
procedure can result (1) from state dependencies
between steps (e.g., close the isolation valve before
opening the flow valve) or (2) from the need to make
these sequences easier for humans to learn and
perform. The knowledge necessary to distinguish
between these two cases is needed when automating
the procedure steps but is not captured in procedures
today. Instead, such knowledge is passed on to the
operations personnel during training. PRL has added
the AutomationData tag that defines pre-conditions and
post-conditions on actions. When the appropriate
action cannot be determined at authoring time, the
BranchingCondition tag defines how to select the
appropriate action when the procedure is executed.

Once the procedure encodes this additional
knowledge about command and data referencing (via
the DataReference tag) and conditions on actions (via
the AutomationData and BranchingCondition tags), it
is possible to derive software for taking these actions
automatically from the procedure.

We have used PRL to support our approach of
adjustable autonomy through procedures. When
authoring the procedure, we identify whether a step can
be automated and, if so, whether a step should be
automated. Physical constraints on the automation of
procedures include (1) inadequate instrumentation to
automate a command or detect the effects of a
command, and (2) limited response times not possible

with the procedure infrastructure (e.g., millisecond
response times are best implemented in flight
software). Mission constraints (e.g., flight rules) on the
automation of procedures include (1) actions always
requiring human approval before execution, and (2)
actions best suited to human decision making.

These constraints can be added to the PRL for each
instruction using the executionMode attribute. Possible
values for the executionMode include (1) Manual – the
action should only be performed by a person, (2)
Automated – the action should only be performed
automatically by software, and (3) Mixed – the action
can be performed either by a person or by software.

Manual actions are accomplished via PRL
InputInstructions, which provide the user with a
statement of what needs to be done and a means for
confirming when it has been done. Automated actions
are accomplished via a variety of PRL instruction types
such as a CommandInstruction that sends a command
to the spacecraft or a VerifyInstruction that monitors
for a telemetry value. The instruction type used
depends upon the action to be taken. Kortenkamp [11]
describes the actions available in PRL. When an action
is designated as Mixed, it is necessary to provide two
methods for accomplishing it – one manual and one
automated.

2.2. Adjustable Autonomy

Our approach to adjustable autonomy is to provide

assistive software that guides the performance of a
procedure written in PRL based on the Level of
Autonomy (LOA) settings defined for the procedure,
its steps, and its instructions. As described in the
previous section, constraints on the LOA settings are
specified when the procedure is authored. The LOA
settings can then be adjusted within these constraints
when the procedure is executed. We have implemented
three LOA settings in our initial approach:
• Manual: the action associated with the current

instruction is performed by a person using systems
outside the adjustable autonomy software,

• Automated: the action associated with the current
instruction is performed automatically by the
adjustable autonomy software, including telemetry
monitoring and command dispatching, and

• Consent: the action associated with the current
instruction is performed by the adjustable
autonomy software after receiving human
approval

The current instruction is identified by the
adjustable autonomy software as the instruction in the
current step that has met the instruction pre-conditions
and start-conditions of the instruction but has not yet
met the instruction end-conditions. Likewise the

current step is identified as the step that has met the
step pre-conditions and start-conditions of the step but
has not yet met the step end-conditions.

The LOA can be assigned for a procedure, a step, an
instruction, or a combination of settings at these
different levels of the procedure hierarchy. Currently
we do not support setting a LOA for the procedure
block. If no LOA setting has been specified for a
procedure element, the LOA setting at the level above
it is used (e.g., if no LOA for an instruction, the LOA
setting for the step containing it is used). If no LOA
setting has been specified at any level above an
element, the LOA setting is considered undefined.

The LOA settings are represented using XML,
based on an XML schema. These settings are linked to
procedures, steps, and instructions using the same
identifiers defined in the PRL procedure. The
following example defines a CONSENT LOA setting
for step_10 in procedure 3209:

<procedure xmlns="http://www.traclabs.com/....."
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation="http://www.traclabs.com/.....

./LOA.xsd" id="3209">
 <step id="step_10">
 <loa loa="CONSENT" />
 </step> ……
We have developed a prototype to evaluate our

approach to adjustable autonomy. This prototype
provides the following capabilities:
• Procedure Executive: steps through the procedure

and takes action based on the LOA setting.
Actions taken for automated instructions include
monitoring for a value in telemetry and
dispatching a command to a spacecraft system.
Actions taken for manual instructions include
asking the user for information needed to
determine the next action to take (e.g., do you
smell smoke) and asking the user to respond when
a manual task is done.

• Procedure Support Software: tracks the state of
procedure execution for display to the user and
routes queries from the Procedure Executive to the
designated users.

• Procedure Display: provides a user interface for
monitoring the execution of automated
instructions and for interacting with the Procedure
Executive for manual or consent instructions.

• LOA Server: distributes LOA settings to the
Procedure Executive and the Procedure Display,
including updates to settings made from the
display just prior to executing the procedure.

Figure 1 shows the adjustable autonomy architecture.

These LOA values are served to the Procedure

Executive and the Procedure Display by a LOA server.
The LOA server is initialized from an XML file with
default settings for procedures. As described
previously, if a LOA setting is requested and nothing
has been specified for it, the server attempts to derive a
LOA setting by using the setting at the level above the
requested element (e.g., step LOA for an unspecified
instruction LOA or the procedure LOA for an
unspecified step LOA). If it is not possible to derive a
setting using this approach, the empty string is returned
indicating an undefined LOA setting.

The LOA settings can be retrieved from the server
by requesting all LOA settings for a procedure or by
requesting a single setting for either a step or
instruction within a procedure. The Procedure Display
takes changes to a LOA setting made by the user and
sends them as updates to the server. If the setting
changes while the server is running, the change is
passed to the Procedure Executive. The user then can
save the updated settings to file if the changes should
persist after the software is shutdown.

For Manual steps and instructions, the adjustable
autonomy software cues the person executing the
procedure when it is time to take action. It prompts the
user to indicate when the actions are complete, and
modifies the appearance of the Procedure Display to
reflect the state of execution (e.g., completed). It also
provides a means for the user to exit the procedure by
cancelling a step or instruction.

For Automated steps and instructions, the adjustable
autonomy software checks the conditions in the
AutomationData, dispatches any commands within the
step, and monitors any telemetry identified within the
step. It informs the user when it begins to execute the
step or instruction, and when it completes the step or
instruction by changing the appearance of the step or
instruction on the Procedure Display.

For steps and instructions requiring Consent, the
adjustable autonomy software first requests the user for
permission to proceed with automated execution of the
step or instruction. If permission is granted, the
software behaves as if the step or instruction were
designated as Automated. If permission is denied, the
software stops executing the procedure and exits.

The ability to adjust the LOA settings without
having to re-author the procedure is central to our
operations concept. We accomplish this by authoring
the procedure to include sufficient information to
execute the procedure instructions both manually and
automatically, when permitted by LOA constraints
(i.e., Mixed mode). We use the LOA settings during
execution to select which of these methods to use.

There are a number of advantages to this approach.
The procedure contains the full range of manual to
automated capability early on, even if the operational
use of the procedure remains primarily manual, as in
crewed operations today. This supports the gradual
adoption of automation by permitting portions of
procedures to be incrementally automated as users gain
knowledge about how they want to use automation and
as additional instrumentation becomes available. It also
permits adjusting normally automated steps to be
manual in special circumstances where a more active
user involvement is desired. When changing aspects of
the procedure to accommodate operational changes,
both the manual and automated methods can be
changed and certified at one time. Finally, the
knowledge captured to automate instructions can
improve crew situation awareness (e.g., knowledge of
preconditions for an instruction is informative for a
person performing the instruction). Such knowledge is
typically captured as part of mission training today.

3. Evaluation

We have applied our adjustable autonomy technology
in two NASA domains – procedures for the
International Space Station (ISS) and procedures for
remote supervision of the Centaur robot. We have
evaluated our technology on procedures for the ISS
power distribution system with a high fidelity
simulation. We also have evaluated our technology on
procedures for the supervisor of a Centaur robot
operating from the JSC Cockpit.

3.1. International Space Station Procedures

We have developed a prototype of our adjustable
autonomy architecture for evaluation with ISS
procedures. We represented ISS procedures for the
power distribution portion of the Electrical Power

Proc

Executive

Procedure

Support

Proc

Display

Procedures

(PRL)

LOA Server

LOA

Settings

(XML)

to

spacecraft

from

spacecraft

Proc

Executive

Procedure

Support

Proc

Display

Procedures

(PRL)

Procedures

(PRL)

LOA Server

LOA

Settings

(XML)

LOA

Settings

(XML)

to

spacecraft

from

spacecraft

Figure 1. Adjustable Autonomy Architecture

System (EPS) in PRL. We executed these procedures
using our adjustable autonomy prototype integrated
with a high fidelity simulation of Station (ISS in a
Box) that models flight hardware and software. We
used this prototype to evaluate the use of adjustable
autonomy for responding when a power distribution
switch trips unexpectedly. In this situation, any system
downstream of the tripped switch loses power. The
immediate response is to mitigate fault effects and
diagnose the problem using malfunction procedures.
The longer term response is to reconfigure or repair the
system to fix the problem. We implemented both
malfunction and checklist procedures for ISS EPS in
PRL.

We used this prototype to evaluate the following
hypotheses about our approach to adjustable
autonomy:
• Hypothesis 1: Procedure steps and instructions can

be encoded in PRL with the information necessary
to be executed either manually or automatically

• Hypothesis 2: The LOA settings for these PRL
procedures can be adjusted just prior to execution
without modifying the PRL for the procedure.

For this evaluation, we used the Reactive Action
Package System (RAPS) [6] as the Procedure
Executive. Because RAPS does not interpret PRL
directly, we developed a translator that uses the
semantics of PRL to produce RAP code from a PRL
file. We also have translated these ISS procedures into
the PLEXIL language [19] in a similar fashion.

The LOA translation for our RAPs executive has
both an autonomous and a manual method of execution
for every RAP that engages the system under control
(known as a primitive). For each RAP primitive, our
implementation uses a LOA setting in memory to
select the appropriate method. Since each PRL
instruction has a corresponding RAP primitive, it is
natural for the RAP executive to use the LOA provided
by the LOA server to select the appropriate method.
With the PRL semantics, we have expanded our
approach by adding a consent method for each
primitive that takes priority over the other two
methods. If the LOA is Consent, the consent method is
executed first. If consent is not obtained, the primitive
fails. If consent is obtained then the automated method
is executed.

To evaluate Hypothesis 1 we encoded two ISS
procedures using PRL: (1) power switch trip
malfunction procedure, and (2) power switch
reconfiguration checklist procedure. Each of these
procedures includes methods for some steps to be
executed either manually or automatically. The
malfunction procedure performs initial diagnosis of the
cause of the trip and attempts to re-close the switch, if
it is safe to do so. The checklist procedure reconfigures

the portion of the power distribution system affected
by the trip to restore normal operations.

We successfully represented both ISS EPS
procedures using PRL. These representations included
the information needed for both manual and automated
execution of many of the steps in these procedures.
Encoding methods for automatic execution required
capturing information about the conditions to be
checked before taking action (i.e., pre-conditions and
start conditions) and the conditions indicating an action
is complete (i.e., post-conditions and end conditions).
As anticipated, we found that these conditions often are
not expressed in current procedures, but are part of
flight training. Incorporating adjustable autonomy into
flight operations will require capturing such
information during procedure authoring.

To evaluate Hypothesis 2, we injected the power
switch trip fault into the simulation and executed the
power switch malfunction procedure to diagnose this
fault and mitigate its impacts. We evaluated this case
twice – first with all steps performed manually as done
for Station today and second with some steps executed
automatically. Manual steps are performed by a person
using the ISS PCS displays connected to the ISS in a
Box simulation. For manual steps, our software
bookmarks the current step and prompts the person to
indicate when the current step is complete. It also
marks which steps have been completed successfully
or aborted. Automatic steps are executed as soon as
they become the current step by automatically sending
Station commands to the ISS simulation. Our software
also monitors available telemetry for evidence that the
command had the intended effect. When these effects
are observed, the step is marked complete. Consent
steps require a person to approve their execution before
commands are dispatched to the ISS simulation.

For the power switch trip malfunction procedure,
our adjustable autonomy software successfully
performed the PRL procedure with different LOA
settings: (1) Case 1 – LOA set to Manual for all steps,
and (2) Case 2 – LOA set to Automated for eight of
sixteen steps. Situated condition checking specified in
the PRL procedures was used to identify the correct
diagnostic actions to take, and the mitigation
commands were performed correctly and in a timely
manner. Anecdotal data from this experiment indicates
that the procedure can be executed more quickly in
case 2 where many of the telemetry checking steps are
performed automatically. This improved performance
time results from eliminating the need to manually
navigate to the appropriate PCS display before
telemetry can be observed or commands can be
dispatched. This approach also reduces the potential
for human error when executing this procedure.

3.2. Centaur Cockpit Procedures

We have developed a prototype of our adjustable
autonomy architecture for evaluation with Centaur
Cockpit procedures. Centaur is a humanoid robot
developed at JSC. It combines highly dexterous
manipulation with stereo vision and a mobile base. The
Cockpit is a facility at JSC for supervision of robots
like Centaur. It provides multiple computers with
configurable software for situation awareness and
remote commanding of robots. We developed Cockpit
procedures for the sample retrieval task performed by
Centaur during the Desert Research and Technology
Study (RATS) in 2006 [9]. We integrated our
adjustable autonomy prototype with both a simulation
of Centaur and the actual robot. We used this prototype
to evaluate the following hypothesis:
• Hypothesis 1: Procedures for adjustable autonomy

can be used to aid humans in performing
procedures that interleave human actions with the
actions of a remote robot
To evaluate this hypothesis, we encoded 16

procedures using PRL. The primitive procedures all
dispatch automatically a single command to Centaur.
These primitive procedures control Centaur by issuing
task-level commands to control software (called the
Central Commander) running onboard the robot. The
composite procedures combine manual steps with these
robot primitives to accomplish more complex tasks.
Manual tasks include verifying robot availability and
providing seed coordinates for the vision system
tracking objects in the robot’s environment. For
example, the user is requested to verify that the robot
base is available for commanding. The execution of the
procedure is paused until this action is performed.
Once it is performed, commands to move the robot
base are automatically dispatched.

At the time of publication, we have evaluated five
procedures for commanding the Centaur robot from the
JSC Cockpit, including commands to both the upper
and lower body of Centaur. Using our adjustable
autonomy prototype, we demonstrated the ability to
assist the Cockpit Supervisor in commanding Centaur
for portions of the sample retrieval task. This
assistance includes (1) prompting the Cockpit
Supervisor when manual actions are needed, (2)
collecting information from the user needed to
construct robot commands, and (3) tracking the
completion of robot commands and human actions to
improve human situation awareness.

4. Related Work

Adjustable autonomy was introduced for
supervisory control of robotic systems [14]. Since then,
techniques for adjustable autonomy have proliferated
for robotics [7, 8, 10, 18] as well as a variety of other
fields including multi-agent systems [1, 4, 15], process
control [13], and vehicle system control [3, 5, 16, 20].
Our implementation of Level of Autonomy is derived
from the work by Bonasso et al. [2] to develop
adjustable autonomy for supervising the Shuttle remote
manipulator. He defines manual and automated control
methods for each primitive task (where possible) and
adjusts the LOA by selecting one of these methods for
each primitive task. We have extended this approach
by implementing additional levels derived from
Parasuraman et al. [14] levels of autonomy (i.e.,
Consent = Level 5, computer suggests an action and
executes that suggestion if the human approves).

Our procedure-based approach to adjustable
autonomy is consistent with other approaches to
adjustable autonomy for robots [7, 8, 10, 18] in
assigning tasks among a heterogeneous team of
humans and robots. Similar to Fong et al. [7], we focus
on one-to-one interaction between a person and a
robot, while other approaches have focused on one-to-
many interaction between a person and a team of
robots [8, 10, 18]. Heger and Singh [10] define four
levels of autonomy, including the ability for a robot to
ask for human assistance that is not addressed in our
approach, to coordinate a human-robot team
performing assembly tasks. They use Markov models
to automatically determine the task transitions for each
level of autonomy. Fong et al. [7] assume autonomous
robot operation that can be adjusted when a robot
encounters a problem or a person needs robotic
assistance. This adjustment can be initiated by either
the human or the robot reasoning about a model of the
skills of team members. Using a policy-based
approach, Sierhuis et al. [18] adjust the tasks
performed by the human-robot team by constraining
task complexity, execution autonomy, and obligation
for human involvement. Our procedure-based approach
is unique in that it assists not only the performance of
robotic tasks at different levels of autonomy, but also
human tasks. Assisting manual tasks is typically
outside scope for other approaches.

Adjustable autonomy for coordinating multi-agent
systems has focused on strategies for dynamically
adjusting the allocation of tasks among distributed
software agents and humans. Scerri, et al. [15] uses
Markov decision processes to model and reason about
transfer of control during the execution of tasks.
Adjustments consist of designating which agent
performs a task and are made to improve performance.
Barber et al. [1] associate an agent’s decision-making
interaction style with its level of autonomy. Adjusting

the level of autonomy corresponds to changing the
agent’s interaction among the following levels: (1)
command-driven – similar to our Manual, (2)
consensus – involving both human and agent like
Consent but giving the agent the ability to influence
decisions, and (3) locally autonomous/master – similar
to our Automated. This range corresponds to an
organization adjustment that affects the degree to
which the agent controls decision making within its
organization. In our procedure-based approach,
humans determine task allocations within the
constraints on allowable transitions. This is closer to
the policy-based approach of Bradshaw et al. [4] that
defines categories of actions constraints (e.g.,
permitted actions, obligated actions) and adjusts these
policies based on changes in situation and capabilities.
Because of the close tie to human operations, our
procedure-based approach to adjustable autonomy has
only been used for human-system coordination, while
many of the agent-based approaches have been used
for system-system coordination as well. Another
difference is that our procedure-based approach
provides centralized coordination of agents, while
other multi-agent approaches [1, 15] use distributed
coordination of agents.

5. Conclusions

We have defined an approach for providing adjustable
autonomy using electronic flight procedures. We have
developed software for humans to adjust whether a
step in a procedure is performed manually or
automatically, based on the LOA setting. The LOA is
set by a person and constrained by flight rules and the
available instrumentation. We initially implemented
three LOA settings: manual, consent, and automated.
These settings were determined by interviewing flight
controllers that execute procedures on current
spacecraft systems. We have evaluated our approach in
two domains: ISS power procedures and procedures for
supervising robots.

Using ISS procedures in a flight-like environment,
we demonstrated the ability to define and execute a
procedure in PRL with steps and instructions that can
be performed either by a person or automatically. By
changing the LOA settings just prior to execution, we
used the same procedure to successfully perform
operational tasks both manually and automatically.
Because adjusting the level of procedure autonomy did
not require modifying the procedure content, this
approach does not require costly recertification of
procedures when increasing the Level of Autonomy for
a spacecraft system.

Using Cockpit procedures remotely with the
Centaur robot, we demonstrated the ability to define
electronic procedures for joint human-robot tasks.
These procedures encode knowledge required to both
guide a person through manual tasks and to command a
robot to perform its tasks automatically. By providing
the ability to require human consent before dispatching
a robot command, we can shift a person’s attention to
an ongoing task to confirm that previous actions were
successful and that the robot is ready to proceed with
the next action. This supports both safe operations and
improves situation awareness of robot autonomy.

There are some key differences between the
adjustable autonomy prototype for Centaur and the
adjustable autonomy prototype for ISS. Procedures for
complex Centaur tasks are built up from one or two
step “primitive” procedures. These primitives are
defined to be reusable in multiple “composite”
procedures. Procedures for complex ISS tasks,
however, are not built from such reusable primitive
procedures. While some ISS procedures do link to
other procedures, there is much less hierarchy in ISS
procedures than in Centaur Cockpit procedures and
similar steps are repeated instead of encapsulated in a
reusable primitive. A second difference between the
Centaur Cockpit procedures and the ISS procedures
relates to the confirmation of command effects before
sending subsequent commands. For the ISS, it is
common practice to confirm that a command has had
the intended effect before dispatching the next
command. For Centaur, we are investigating an
approach where multiple commands are dispatched and
queued for execution without such confirmation of
effects. This approach is intended to reduce command
latency over time delay [17]. Finally, the prototype for
Centaur Cockpit procedures uses executive software
that natively executes PRL instead of translating PRL
to another executive language, as done in the prototype
for ISS procedures. This PRL Executive was
developed at JSC.

Based on our evaluation, we conclude that
automation of electronic procedures can be used to
implement adjustable autonomy for mission tasks
normally performed by humans.

6. Acknowledgments

We would like to acknowledge Lui Wang/JSC and
Jeremy Frank/ARC for sponsoring the development of
the adjustable autonomy software. We acknowledge
the contributions of Vandi Verma/ARC and Mike
Dalal/QSS in developing and deploying the ISS
adjustable autonomy prototype. We acknowledge the
contributions of Robert Burridge/TRACLabs, Kim

Hambuchen/JSC, and Tam Ngo/JSC in developing and
deploying the Centaur adjustable autonomy prototype.

7. References

[1] Barber, K., A. Goel, C. Martin, “Dynamic Adaptive
Autonomy in Multi-Agent Systems”, Journal of
Experimental and Theoretical Articial Intelligence. 1999.

[2] Bonasso, R.P., D. Kortenkamp and T. Whitney, “Using a
Robot Control Architecture to Automate Space Shuttle
Operations”, IAAI 1997.

[3] Bonasso, R.P., D. Kortenkamp, and C. Thronesbery,
Intelligent Control of a Water Recovery System: Three Years
In The Trenches, in Artificial Intelligence. 2003. p. 19-44.

[4] Bradshaw, J. M., P. J. Feltovich, H. Jung, S. Kulkarni, W.
Taysom, & A. Uszok, “Dimensions of Adjustable Autonomy
and Mixed-Initiative Interaction”, in Proceedings of Agents
and Computational Autonomy 2003: pp. 17-39.

[5] Dorais, G., Bonasso, R. P., Kortenkamp, D., Pell, B., and
Schreckenghost, D., “Adjustable Autonomy for Human-
centered Autonomous Systems”, in Proceedings of
Adjustable Autonomy Workshop. IJCAI. Aug 1999.

[6] Firby, J.R., The RAPs Language Manual, Artificial
Intelligence Laboratory, Department of Computer Science,
University of Chicago: Chicago, IL. 1995.

[7] Fong, T., C. Kunz, L. M. Hiatt, M. Bugajska, “The
HumanRobot Interaction Operating System”, in Proceedings
of ACM/IEEE conference on Human-Robot Interaction 2006.

[8] Goodrich, M., T. McLain, J. Anderson, J. Sun, J. W.
Crandall, “Managing Autonomy in Robot Teams:
Observations from Four Experiments”, in Proceedings of
ACM/IEEE conference on Human-robot interaction 2007.

[9] Hambuchen, K., Bluethmann, W., Goza, M., Ambrose,
R., Rabe, K., & Allan, M., “Supervising Remote Humanoids
Across Intermediate Time Delay.” In proceedings of IEEE-
RAS Humanoids06. Dec. 2006.

[10] Heger F., and S. Singh., “Sliding Autonomy for
Complex Coordinated Multi-Robot Tasks: Analysis &
Experiments”, in Proceedings Robotics: Systems and
Science, Aug 2006.

[11] Kortenkamp, D., R. P. Bonasso and D. Schreckenghost,
“Developing and Executing Goal-Based, Adjustably
Autonomous Procedures,” in AIAA InfoTech@Aerospace
Conference, 2007.

[12] Kortenkamp, D., K. M. Dalal, R. P. Bonasso, D.
Schreckenghost, V. Verma, & L. Wang, “A Procedure
Representation Language for Human Spaceflight
Operations”, In iSAIRAS 2008.

[13] Musliner, D. J. and Kurt D. Krebsbach, “Adjustable
Autonomy in Procedural Control for Refineries”, in
Proceedings of the AAAI Spring Symposium on Adjustable
Autonomy, Mar. 1999.

[14] Parasuraman, R., Sheridan, T. B., & Wickens, C. D., “A
Model for Types and Levels of Human Interaction with
Automation”, IEEE Transactions on Systems, Man, and
Cybernetics. Part A: Systems and Humans, 30, 286-297.

[15] Scerri, P., D. V. Pynadath, M. Tambe, “Towards
Adjustable Autonomy for the Real World”, Journal of
Artificial Intelligence Research 17 (2002) 171-228.

[16] Schreckenghost, D., Malin, J., Thronesbery, C., Watts,
G., and Fleming, L., “Adjustable Control Autonomy for
Anomaly Response in Space-based Life Support Systems”,
In Proceedings of the IJCAI-2001 Workshop on Autonomy,
Delegation, and Control. Seattle, WA. 2001.

[17] Schreckenghost, D, T. Ngo, R. Burridge, L. Wang, and
M. Izygon, “Remote Task-level Commanding of Centaur
over Time Delay”, Space Technology Applications and
International Forum 2008.

[18] Sierhuis, M. J. Bradshaw, A. Acquisti, R. van Hoof, R.
Jeffers, A. Uszok, “Human-Agent Teamwork and Adjustable
Autonomy in Practice”, in Proceeding of i-SAIRAS 2003.

[19] Verma, V., Jonsson, A., Pasareanu, C., Simmons, R.,
and Tso, K., “Plan Execution Interchange Language
(PLEXIL) for Executable Plans and Command Sequences, In
Proceedings of i-SAIRAS 2005.

[20] Wood, S., “Automated Behavior-Based Interaction
Customization for Military Command and Control”,
Intelligent User Interface, Workshop on Behavior-based
User Interface Customization. 2004

