
A Data Abstraction Architecture for Mission Operations

Scott Bell*, David Kortenkamp*, Jack Zaientz**

*TRACLabs Inc., Houston TX USA
e-mail: [korten,scott]@traclabs.com

**Soar Technologies Inc., Ann Arbor MI, USA
e-mail: jzaientz@soartech.com

Abstract

Spacecraft generate huge amounts of data. For exam-
ple, the International Space Station (ISS) has over 250,000
individually identified pieces of low-level telemetry and
commands. Newer space vehicles and habitats will still
generate incredible amounts of telemetry. People have
difficulty interpreting large streams of numeric values be-
cause our brains are optimized for visual and symbolic
reasoning activities. While computers are good at in-
terpreting large streams of numeric values, advanced au-
tomation software is similar to humans in being optimized
for symbolic reasoning. Thus, a significant problem in
both monitoring and controlling space vehicles, robots
and habitats is turning large streams of numeric values
into more abstract and more symbolic information. This
paper describes a Data Abstraction Architecture that for-
malizes the data abstraction process for space systems.

1 Introduction

Modern space systems such as satellites, human
spacecraft, planetary probes and space robots are highly
sensored and generate large amounts of data. For this data
to be useful to humans monitoring these systems and to
automated algorithms controlling these systems, it will
need to be converted into more abstract data. This ab-
stracted data will reflect the trends, states, and character-
istics of the systems and their environments. Currently
this data abstraction process is manual, ad hoc, and inter-
mingled with control systems. It is manual in the sense
that either humans do the abstraction in their heads or
the data abstraction is done by hand-coding computer pro-
grams for each data item. It is ad hoc in the sense that each
data abstraction is developed on its own with no represen-
tation of how it relates to the tasks being performed or to
other data abstractions. It is intermingled with the control
systems in that data abstractions are irreducible and diffi-
cult for other programs, like displays and analysis tools,
to access. In this paper we describe the Data Abstraction
Architecture (DAA) that allows engineers to design soft-
ware processes that iteratively convert spacecraft data into

higher and higher levels of abstraction. The DAA pro-
vides a canonical way to assemble and interact with data
abstraction. Similar to control architectures (e.g., [2, 9], a
data abstraction architecture provides a tool-box of com-
ponents and connections that allow engineers to build and
maintain data abstraction systems.

Our architecture consists of the following key compo-
nents:

• Data abstractors: A defined transformation of data
signals from one form to another, usually more ab-
stracted or specialized, form.

• Sensor Event Abstraction Language (SEAL): An
XML scheme that formally represents the connec-
tions between different data abstractors and the in-
coming data.

• Data Abstraction Reasoning Engine (DARE): En-
codes the SEAL-represented data abstraction archi-
tecture in a computer program that is connected to
the data stream, runs in real time and produces out-
puts for higher-level control systems, system engi-
neers or crew.

• Development environment: An end-user oriented
software tool to aid in the construction of DAAs and
the export of them to DARE.

Taken together these components provide a mechanism
for representing and accessing the data necessary to mon-
itor and control space vehicles, habitats and robots.

2 Data Abstractors

One of the principal functions of the data abstraction
architecture is to define the operations that may be per-
formed on an input message stream. Whether performed
on the message content or the message envelope, these are
referred to as abstractors, for their resulting product is an
abstraction of the input data that is consumed by the next
abstractor in the graph. Different classes of abstractors fo-
cus on different stages in the transformation process rep-
resented by a Data Abstraction Network (DAN). A DAN

is a directed graph ordering of the data source, abstrac-
tors, and sink that represents the order of transformations
to make on the data events. Below is a representative se-
lection of the available abstractors:

Message Management abstractors are designed to help
manage the message flow of the data bus:

• Sampler reduces the number of messages han-
dled to a manageable subset and are generally
used at the beginning of a DAN.

• Temporal Alignment ensures that messages
coming from different sensors at different rates
are grouped to represent events occurring at the
same time.

Data Manipulation abstractors focus on transforming
the sensor data itself:

• Mathematical Functions (Ratio, Average,
Arithmetic) specify math expressions to
perform on the input values

• Unit Transformation changes units of measure

Output Management abstractors focus on which results
are to be included in the output, and how they will
appear:

• Categorical Binner groups numeric values into
symbolic categories (e.g., “low, “med, “high)
and display only the symbolic value.

• Trim drops values that lie outside specified
ranges.

Each of these is described in more detail in the following
subsections.

2.1 Message management
Message management abstractors help organize the

continuous flow of information into the data abstraction
network. The following message management abstractors
have been developed.

Temporal Alignment Collects a single message from
each of multiple input streams and outputs a single
new message that contains the set of collected mes-
sages. Incoming messages (or sub-properties of mes-
sage) are mapped into individual properties on a sin-
gle outgoing message. The abstractor will support
different triggering rules including “all new events
received, “one new event received, or “new event
from input X received.” As, by definition, event
streams work at different rates and send events in
non-deterministic orders, the abstractor must have
buyer management rules that determine how to han-
dle the case when multiple events arrive on one input

while waiting for an event on a different input. These
rules are similar to the Sampler abstractors, and will
include last value, first value, and mean. Temporal
Alignment is the only Message Management abstrac-
tor that is required in every DAN.

Sampler Used to accumulate a buffer of discrete mes-
sages over a defined observation period and reduce
them to a single message. Sampler takes a single in-
put stream of messages and allows every Nth mes-
sage, as determined by the’ sample-rate’ property, to
pass through. Example sample abstractors may in-
clude ‘last value,’ ‘first value,’ and ‘mean.’

Accumulator Collects events from a single event stream
over a defined observation period (in terms of time,
message number, or external signal) and releases a
single output message that contains an ordered set of
the messages collected. The accumulator takes a sin-
gle field from the input message and adds a new prop-
erty to the message which is a list of the last ‘buffer-
size’ values of that field.

2.2 Data manipulation
Data manipulation abstractors combine multiple

pieces of data (or the same data over a time interval) to
create a new piece of data. The following data manipula-
tion abstractors have been developed.

Ratio Takes a ratio between two numeric values in the in-
coming message and stores it in the ‘result’ property
on the output message.

Average Outputs the average of the input message values.

Arithmetic Performs the specified mathematical func-
tions on the input data and outputs the result.

Equivalence Compares two or more values from an in-
put message, and outputs a value of “true if they are
equal within some threshold and “alse if not.

Count Counts the number of homogenous values in the
input message and outputs the number.

Outliers Checks an array of values for outliers using an
interpercentile range. The final output is an array of
the outlier values.

2.3 Output management
Output management data abstractors organize the data

before it is output to a human (via a display) or to an ex-
ternal algorithm. The following output management ab-
stractors have been implemented.

Categorical Binner Reduces real values into symbolic
categories and outputs the symbolic value. For ex-
ample, a temperature reading could be transformed
into “high,” “medium, or “low.” The symbol output
map for each bin is defined in the expressions prop-
erty.

Trim Selects a sub-element of an input message and out-
puts a new message with only that sub-element. The
location of the sub-element in the output message
may be specified by the ‘result’ property.

Conditional Propagation Performs a test on a value in a
message and then conditionally propagates the mes-
sage if that test resolves to true. Tests may be logical
or arithmetic. Nothing is added by this abstractor.

Propagate on Changes Watches for a change in the in-
put value within a series of received messages then
passes the same message if the value changes. Noth-
ing is added by this abstractor.

Conditional : Forwards data based on whether a Boolean
expression evaluates to TRUE or FALSE.

Sinks Specifies the output target for the transformed data.
This typically represents the intended output from
the DAN.

3 Sensor Event Abstraction Language

The Sensor Event Abstraction Language (SEAL) is an
XML grammar that defines data manipulation and mes-
sage handling operators, enabling the description of so-
phisticated transformations on event-based telemetry data.
The SEAL syntax and semantics are intended to support
the computational requirements of NASA telemetry and
telemetry management processes and align to the concep-
tual model of those processes held by expert NASA flight
control engineers. Finally, the language is intended to sup-
port rapid visual development and inspection of data trans-
formation by skilled engineers who are typically trained in
disciplines other than software engineering. Typical data
transformation programming environments, such as dis-
crete event simulations, circuit design simulators, spread-
sheets, and test systems, structure data transformation us-
ing a graph representation. The standard version of graph
semantics adopted by these environments typically makes
a number of assumptions about node and edge structure
of the graph, specifically that nodes represent information
processing functions that input a single type of informa-
tion and output a single value. The edge represents the
current output of the node. The placing of a new value
on an input edge causes the adjacent nodes to fire, caus-
ing an update on their output edges. This in turn causes
new node firings until the graph reaches quiescence. In

such a graph, where all edges represent a current value,
the graph itself can be seen as having a global memory
state. This structure works fine in environments where in-
put singles are single-data type and where data delivery
is relatively guaranteed. Neither of these constraints is
appropriate in the telemetry environment where messages
often have composite structure and can have significant
latency and drop effects. This structure also does not eas-
ily support the annotation of node-outputs with meta-data
such as error conditions, pedigree descriptions, or uncer-
tainty values. SEAL, while also using a graph-based struc-
ture, draws on an event-based message passing semantics
similar to that found in enterprise messaging systems [3]
In this semantics, an edge represents the path a message
may follow, but not the message itself. Along these edges,
there are two classes of nodes: message-element opera-
tors, which transform data elements in a message into a
new data element appended to the message, and message-
envelope operators, which manipulate message structure
to route or merge messages or to remove data elements
from a message. In this semantics, a message is a com-
plex memory structure while the overall graph has no per-
sistent state. As messages traverse the graph they pick up
new data elements, building up not only an output value
but a processing history. This conceptually clarifies and
computationally simplifies standard telemetry processes
such as sampling and temporal alignment (to manage data
over/under runs). Sampling, for example, can be instan-
tiated as a message-envelope operator, accumulating a set
of messages over a period of time into a single message,
followed by message-data operator (e.g., mean) that re-
duces data values in the individual message sections into
a single data value. Temporally aligning temperature read-
ings from different thermal sensors in a spacecraft cham-
ber is a matter of linking each of their message-paths to
a message-envelop operator which groups them by time
range. This message-passing semantics is well suited to
the NASA telemetry environment, matching how flight
controllers understand telemetry processing and the kinds
of configurations they would expect to perform. It also
allows a number of computational benefits including easy
distributed processing and load-balancing due to the lack
of global memory and easy integration with messaging
systems. Finally, it provides an excellent basis for feeding
data into high-level controllers due to its ability to output
both raw instrument data and processed or symbolized in-
formation in the same message.

This basis allows for more complicated structures to
be built up. For example, a Quiescence Filter only passes
a value out the far side if that value has remained within
tolerances for a prescribed time interval. Figure 1 shows
one possible implementation of a Quiescence Filter. First
an alignment operator and equivalence operator pair gath-
ers a set of messages together (from different data sources)

Figure 1. An example SEAL abstraction architecture describing a quiescence filter.

and evaluates them to see if they are within tolerance. Sec-
ond, the message, which contains all the original messages
and the output of the equivalence test, is passed to another
accumulator operator and equivalence operator pair. This
pair compares whether the group that is within tolerance
has remained in tolerance for the prescribed amount of
time. Note that this example makes strategic use of both
message-envelop operators (temporal alignment and ac-
cumulation) and a simple message-data operator (equiv-
alence) to instantiate the more complex notion of quies-
cence. The formal specification of the language seman-
tics is a specialization and XML rendering of the gen-
eral Set-Function (SF) syntax described by Bertziss [1]
Our version streamlines the general SF grammar, reduc-
ing expressiveness in favor of non-software engineer pro-
grammability. Where SF allows the description of rich
preconditions to trigger each processing event, we restrict
this to a simple message existence / location test requiring
preconditions that discriminate based on message content
to be constructed in a separate processing event. Like SF
we divide event processing into two functions, one that re-
duces a data set to an output value (or set of values) and
one that positions the output of the first function at some
location in the output message. We support the visual se-
lection of set functions by selection of message-data or
message-envelope operator objects in the visual editor,
and the linkages of these functions to event-preconditions,
by visually linking abstractor objects via message-paths.
Currently the function for placing data output in a mes-
sage object is not handled visually, but through the textual
specification of a message path. These features ensure
that, like SF, SEAL is a general language that can con-
struct a large set of possible data transformation graphs
and do so in a manner that is primarily visual.

4 Data Abstraction Reasoning Engine and
SEAL editor

The Data Abstraction Reasoning Engine (DARE)
takes a SEAL file and instantiates it as a Java program
that is connected to the data sources and sinks, runs in
real time, and produces events for higher-level control sys-
tems, system operators, or crew. DARE uses ActiveMQ
and Java Messaging Service (JMS) as middleware to al-
low for distributed execution of SEAL files. DARE is
light-weight and portable and can be run on several cur-
rent operating systems including Windows, Mac OSX and
Linux.

The SEAL editor allows the user to graphically build
a Data Abstraction Network (DAN) from a list of ab-
stractors provided by a library file. The SEAL edi-
tor was developed as an Eclipse plug-in. Eclipse is an
open-source integrated development environment (IDE)
framework that provides a platform of pre-existing func-
tionality, which allows developers to create language-
specific IDEs without re-writing everything from scratch.
The SEAL editor allows for a drag-and-drop approach to
building Data Abstraction Networks and doesn’t require
the end user to understand XML or SEAL.

5 A Data Abstraction Example

We tested the Data Abstraction Architecture by im-
plementing an International Space Station (ISS) flight rule
as a Data Abstraction Network. Flight rules govern the op-
eration of space vehicles. Flight rules are currently writ-
ten in Microsoft Word and are not monitored by software
systems. The flight rule we chose governs the operation
of the smoke detectors on ISS. The flight rule determines
when a smoke detector is ‘dirty’ and must be serviced. It
does this by looking at specific telemetry coming from that
smoke detector, performing calculations on that teleme-

Figure 2. A data abstraction network for the smoke detector flight rule.

try, and comparing those calculation to pre-defined limits.
We manually translated this flight rule into the SEAL lan-
guage. A visual representation of this SEAL file, includ-
ing all of the abstractors, is shown in Figure 2.

Starting in the upper left, the hexagons are two sensor
inputs from ISS – the scatter voltage and the obscuration
voltage. The other hexagon is a constant, determined ex-
perimentally and referenced in the flight rule. An arith-
metic abstractor computes a new value from the obscu-
ration voltage and the constant. Next, a temporal align-
ment abstractor makes sure that we are comparing two
values that were obtained at the same time. This prevents
stale values from being compared to new values. This ab-
stractor outputs two values that are temporally consistent.
Another arithmetic data abstractor computes the percent
tripped for that smoke detector. An accumulator abstrac-
tor gathers up those readings over time (the “sustained”
part of the flight rule) and passes all of those to an average
abstractor. That average is first compared to the limit 40%
and then to the limit 50% with either the result of OK or
dirty and inhibit monitoring respectively. That is, if the
limit is less than 40% the smoke detector is OK. If the
limit is between 40% and 50% the smoke detector is dirty
and must be serviced. If the average is greater than 50%
the smoke detector must be inhibited (turned off). Finally,
telemetry that states whether or not the smoke detector is
inhibited is compared to the result of the computation to
determine whether the smoke detector should be inhibited.
If they agree, then the flight rule is being followed. If not,

then the flight rule is being violated.

5.1 Flight controller interaction with flight
rules

The Mission Control Technology (MCT) project is
developing new display software for NASA Mission Con-
trol Center (MCC) [13]. We developed a custom MCT
component that connects with DARE to retrieve informa-
tion. We also created a view of that component so that
users can inspect the data abstraction network and see the
abstracted data. The view allows a user to see the entire
data abstraction network in graphical form (see Figure 3).
It also allows the user to inspect the values, units, etc. of
any part of the data abstraction network as well as change
data abstractor parameters.

5.2 Connecting to ISS data
We tested our data abstraction network against actual

ISS smoke detector telemetry. We did this by connecting
DARE to the Information Sharing Protocol (ISP) network
that publishes live ISS telemetry. We accessed this net-
work through a Virtual Private Network (VPN) account
with NASA JSC. The data abstraction network was suc-
cessfully able to monitor a specific smoke detector on ISS.
ISP also has the capability to playback a hand-built file of
telemetry values. We used this to test the data abstrac-
tion network against data that violated the flight rule. This
test confirmed that the data abstraction network could de-
tect when the flight rule was being violated. This proof-

Figure 3. Screen shot of the MCT user interface for the data abstraction network.

of-concept demonstration was done using the MCT mis-
sion control interface. Figure 4 shows the set of processes
used for this proof-of-concept demonstration. The XTCE
referred to in the diagram stands for the XML Telemet-
ric and Commanding Exchange XML schema. XTCE
is an emerging standard for representing telemetry and
commands for space systems. It has been adopted as a
standard by NASA to represent commands and telemetry.
XTCE serves as the source of our raw telemetry informa-
tion. We can also output an XTCE file that contains the
abstracted telemetry generated by DARE.

6 Related work

Several autonomous control architectures had explicit
data abstraction. One clear example is the Supervenience
architecture [12]. The architecture consisted of commu-
nicating levels in which lower levels pass data about the
world to higher levels. At the same time higher levels
pass goals down to lower levels. It is implemented using a
blackboard architecture at each level. Each level also con-
tains its own uniform data representation. Several agent-
based systems have looked at the information retrieval and
integration problem (see [5] and [8]). Some early exam-
ples of agent systems for information retrieval and coordi-
nation include COLLAGEN [10], Infomaster [4] and work
by Jennings [6] and Lesser [7]. Another example would
be the Mobile Agents work of Clancey and Sierhuis, es-
pecially with respect to robotics interaction [11].

7 Conclusions

Data abstraction is a critical component of the space
system information flow. Dealing with raw telemetry is
difficult for human controllers and for automated systems.
This paper describes a formal methodology for abstracting
spacecraft telemetry into more abstracted data constructs.
This methodology includes a abstraction representation,
an abstraction engine and an integrated development en-
vironment. The architecture was validated using live ISS
telemetry running in real time. The architectural compo-
nents have been integrated with the next generation mis-
sion control software tool suite.

8 Acknowledgments

This work funded under NASA contract
NNX08CA11C. The authors wish to thank Jeremy
Frank and Jay Trimble of NASA Ames Research Center
and Alan Crocker and Christie Bertels of NASA Johnson
Space Center for their contributions to the ideas presented
in this paper.

References

[1] Alfs Berztiss. Formal specification methods and vi-
sualization. In Shi Kuo Chang, editor, Principles
of Visual Programming Systems. Prentice-Hall, Inc.,
Upper Saddle River, New Jersey, 1990.

Figure 4. The processes that were used to monitor ISS flight rules.

[2] R. Peter Bonasso, R. J. Firby, E. Gat, David Ko-
rtenkamp, David P. Miller, and Marc Slack. Expe-
riences with an architecture for intelligent, reactive
agents. Journal of Experimental and Theoretical Ar-
tificial Intelligence, 9(1), 1997.

[3] Dave Chappel. Enterprise Service Bus. OReilly Me-
dia, Inc., Sebastopol, CA, 2004.

[4] Michael R. Genesereth, Arthur M. Keller, and
Oliver M. Duschka. Infomaster: an information in-
tegration system. In Proceedings of the ACM SIG-
MOD Conference, pages 539–542, 1997.

[5] D. S. Haverkamp and S. Gauch. Intelligent informa-
tion agents: Review and challenges for distributed
information sources. Journal of the American Soci-
ety for Information Science, 49(4), 1998.

[6] N. R. Jennings. Coordination techniques for
distributed artificial intelligence. In G. M. P.
O’Hare and N. R. Jennings, editors, Foundations of
Distributed Artificial Intelligence, Sixth-Generation
Computer Technology Series,. John Wiley and Sons,
New York, 1996.

[7] V. R. Lesser. Reflections on the nature of multi-agent
coordination and its implications for an agent archi-
tecture. In Autonomous Agents and Multi-Agent Sys-
tems (AAMAS-98), 1998.

[8] T. W. Malone, K. Y. Lai, and K. R. Grant. Agents for
information sharing and coordination: A history and
some reflections. In J. M. Bradshaw, editor, Software
Agents. AAAI Press, Menlo Park CA, 1997.

[9] Nicola Muscettola, P. Pandurang Nayak, Barney
Pell, and Brian C. Williams. Remote Agent: to
boldly go where no AI system has gone before. Ar-
tificial Intelligence, 103(1), 1998.

[10] C. Rich and C. L. Sidner. COLLAGEN: a col-
laboration manager for software interface agents.
User Modeling and User-Adapted Interaction, 8(3-
4), 1998.

[11] Maarten Sierhuis, Jeffrey M. Bradshaw, Alessan-
dro Acquisti, Ron van Hoof, Renia Jeffers, and An-
drzej Uszok. Human-agent teamwork and adjustable
autonomy in practice. In Proceedings of the 7th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space: i-SAIRAS 2003,
2003.

[12] L. Spector and J. Hendler. Planning and reacting
across supervenient levels of representation. Inter-
national Journal of Intelligent and Cooperative In-
formation Systems, 1(3), 1992.

[13] Jay Trimble, Joan Walton, and Harry Sadler. Mis-
sion control technologies: A new way of designing
and evolving mission systems. In AIAA Space Oper-
ations 2006, 2006.

