
Experiences with an Architecture for Intelligent�

Reactive Agents

R� Peter Bonasso�� R� James Firbyy�Erann Gatz�

David Kortenkamp�� David P� Millerx� Marc G� Slackx

�Metrica Incorporated

Robotics and Automation Group

NASA Johnson Space Center � ER�

Houston� TX �����

fbonasso�korteng�mickey�jsc�nasa�gov

yComputer Science Department

University of Chicago

		

 East ��th Street

Chicago� IL �
���

zJet Propulsion Laboratory

��

 Oak Grove Dr�

Pasadena� CA �		
�

xThe MITRE Corporation

��� Colshire Dr�

McLean VA� 	

Abstract

This paper describes an implementation of the �T robot architecture
which has been under development for the last eight years� The architec�
ture uses three levels of abstraction and description languages which are
compatible between levels� The makeup of the architecture helps to coor�
dinate planful activities with real�time behaviors for dealing with dynamic
environments� In recent years� other architectures have been created with

�

similar attributes but two features distinguish the �T architecture� �� a
variety of useful software tools have been created to help implement this
architecture on multiple real robots� and �� this architecture� or parts of
it� have been implemented on a variety of very di	erent robot systems
using di	erent processors� operating systems� e	ectors and sensor suites�

� Introduction

Since the late eighties we have been investigating ways to combine deliberation
and reactivity in control architectures for programming robots to carry out
tasks robustly in �eld environments �Miller� ����� Firby� ����� Gat et al�� �����
Bonasso et al�� ���	� Kortenkamp et al�� ���
� Miller et al�� ����� We believe
this integration is crucial Not only must an agent be able to adjust to changes
in a dynamic situation� it must also be able to synthesize plans� the complexities
of the real world make precompiling plans for every situation impractical We
have arrived at an architecture that is an outgrowth of several lines of situated
reasoning research in robot intelligence �Brooks� ����� Firby� ����� Gat� ���	�
Connell� ���	� Slack� ���	a� The architecture allows a robot� for example�
to plan a series of activities at various locations� move among the locations
carrying out the activities� and simultaneously avoid danger� maintain nominal
resource levels� and accept guidance from a human supervisor We have used the
architecture to program several mobile and manipulator robots in real world en�
vironments and believe that it o�ers a unifying paradigm for control of intelligent
systems

Our architecture separates the general robot intelligence problem into three
interacting layers or tiers and is thus known as �T The particular implementation
of �T described in this paper consists of�

� A dynamically reprogrammable set of reactive skills coordinated by a skill
manager�Yu et al�� �����

� A sequencer that activates and deactivates sets of skills to create networks
that change the state of the world and accomplish speci�c tasks For this
we use the Reactive Action Packages �RAPs� system �Firby� �����

� A deliberative planner that reasons in depth about goals� resources and
timing constraints For this we use a system known as the Adversarial
Planner �AP� �Elsaesser and Slack� �����

Figure � shows how these software tiers interact Imagine a repair robot
charging in a docking bay on a space station At the beginning of a typical day�
there will be several routine maintenance tasks to perform on the outside of the
station� such as retrieving broken items or inspecting power levels In addition�
a human supervisor assigns the robot a set of inspection and repair tasks at a
number of sites around the station

The planner �deliberative tier� synthesizes all of these goals into a partially�
ordered plan listing tasks for the robot to perform These tasks would call for the
robot to move from site to site conducting the appropriate repair or inspection at

	

World /
Environment

Deliberation

Sequencing

Sensor Readings

Partial Task Ordering

Instantiated Tasks

Reactive Skills

 Actuator Commands

Figure �� The
T Intelligent Control Architecture

each site For our example� we examine a subset of those tasks which might apply
to one site� namely �� navigate to the camera�site�� site� 	� attach to camera�site�
��
� unload a repaired camera� �� detach from camera�site�� Each of these tasks
corresponds to one or more sets of sequenced actions� or RAPs �Firby� ����� The
planner then begins executing its plan and monitoring the results By matching
via uni�cation each task�s propositional e�ects clauses with the succeed clauses
of RAPs in the RAP library� the planner selects a navigate RAP to execute the
�rst task

The RAP interpreter �sequencing tier� decomposes the selected RAP� into
other RAPs and �nally activates a speci�c set of skills in the skill level �reactive
tier� Also activated are a set of event monitors which noti�es the sequencing tier
of the occurrence of certain world conditions In this example� one of the events
being monitored would be when the location of the end of the docking arm was
within some speci�ed tolerance of camera�site�� When this event occurs� the
fact �at robot camera�site��� would be posted to the RAP memory

The activated skills �reactive tier� will move the state of the world in a
direction that should cause the desired events The sequencing tier will terminate
the actions� or replace them with new actions when the monitoring events are
triggered� when a timeout occurs� or when a new message is received from the
deliberative tier indicating a change of plan In our example� the navigate RAP�s
succeed clause �at robot camera�site��� would be true� terminating the RAP and
causing the planner to label task one complete and move on to execute the next
task

� Software Tools for Architecture Implementa�

tion

To support the use of these architectural ideas� we have developed a number of
tools and systems for integrating the three tiers together and providing the user
with a paradigm for developing robotic applications

�A given RAP can represent a complex� though routine� procedure for accomplishing a task�
For instance� in one of our manipulator projects� unloading an item involves unfastening bolts�
two or three tool changes� and the use of a redundant joint capability�

��� Skills

Situated skills represent the architecture�s connection with the world The term
situated skill �Slack� ���	b� is intended to denote a con�guration of the robot�s
control system that� if placed in the proper context� will achieve or maintain
a particular state in the world In practice� control system con�gurations are
created by enabling a set of skills that work together in a given context For
example� one might develop a situated skill for grasping a handle that uses a
skill to visually track the handle� a skill to move the hand toward the target�
and a skill to close the gripper on contact Such a collection of skills will be
useful if the robot is currently located in front of a handle but might fail in other
situations Skills form the robot�speci�c interface with the world� handling the
real�time transformation of desired state into continuous control of the motors
and interpretation of the sensors

As robots and other systems can vary greatly in their physical characteristics
and sensor capabilities� the skills that make up the robot�s interface with the
world also vary greatly between robots and environments So� to keep the
control architecture robot independent� we have developed a set of tools for
constructing these situated skills �Yu et al�� ����� This canonical approach to
skill development forces a standard interface among the skills and a standard
interface to the sequencer� independent of the physical characteristics of the
robot and sensors to which they are connected The representation includes�

� The skill�s input and output speci�cation Each skill must provide a
description of the inputs it expects and a listing of the outputs that it
generates This allows skills to be networked by having the outputs of one
skill automatically routed to the inputs of another skill

	 A computational transform This is where the skill does its work Once a
skill is enabled� it uses this transform to continually recompute its outputs
based on its current inputs

 An initialization routine Each skill is given the opportunity to initialize
itself when the system is started �eg� setup communications ports� etc�

� An enable function The sequencer can enable and disable skills Depend�
ing on the context� a skill is given the opportunity to perform any special
start up procedures each time it is enabled

� A disable function When a skill is no longer needed� the sequencer will
disable it and the disable function performs any necessary cleanup actions

From the sequencer�s perspective� skills must be capable of being enabled and
disabled in any combination depending on the situation Except for common in�
put and output data structures� each skill is totally independent of the others At
any one time the reactive tier of the architecture is characterized by the currently
enabled network of skills To provide the sequencer with a uniform interface
and to allow the skills to communicate with each other� the skill development
environment encapsulates the skills inside the skill manager The skill manager

�

also handles the interface with the sequencing system by providing all of the
communications and asynchronous events that the sequencer needs in order to
stay coordinated with the skills

The ability to recon�gure the system according to various aspects of the task
at hand allows the developer to focus e�ort on the important facets of particular
tasks without having to be overly concerned with the way in which the skills as
a whole interact to generate coherent task�directed behavior The determination
of how best to con�gure the skills for the situation at hand is the task of the
sequencing tier

��� Sequencing

To accomplish tasks that the robot must routinely perform� the architecture has
a sequencing system In our case� the sequencer is the RAPs interpreter In its
simplest form� a RAP is simply a description of how to accomplish a task in the
world under a variety of circumstances using discrete steps For example� a RAP
for docking with the hull of a spaceship might have the following form�

�define�rap �attach�at�site �thesite�

�succeed �docked �thesite��

�method

�context �ferrous�hull �thesite��

�task�net

�sequence

�t� �approach�site �thesite��

�t� �magnetically�attach �thesite�

�wait�for �docked �thesite������

�method

�context �not �ferrous�hull �thesite���

�task�net

�sequence

�t� �approach�site �thesite��

�t� �grip�attach �thesite�

�wait�for �docked �thesite�������

Notice that the way the task is accomplished is dependent upon the robot�s
knowledge of the situation So� in the above example the robot accomplishes
the task of attach�at�site di�erently depending on whether the spaceship�s hull
is ferrous or not Further distinctions could be made depending on the size of
the craft or on any other task relevant feature The sequencer contains a library
of such RAPs� each keyed to speci�c situations and each activating a di�erent
set of skills in order to accomplish its particular task In the above example� the
wait�for statements cause the RAP interpreter to block that branch of the task
execution until a reply is received from the skill manager Replies are produced
by special skills called events Events take inputs from other skills and notify
the sequencer whenever a desired state has been detected Thus� the sequencer
uses events to determine when a particular set of skills has completed its work
and when particular states of the world have changed

�

Sequencing� married to reaction� yields signi�cantly better task coverage than
either of the two can provide alone Still� the combination of the sequencing
and reactive tiers is not structured to perform complicated resource allocation
reasoning Nor are these two tiers e�cient at reasoning about the failure re�
quirements or consequences of a task So while the sequencer has the ability
to handle routine situations �eg� unload a camera� move to a site�� it lacks
the foresight to organize novel sequences of routine tasks to manifest a required
�global� behavior The ability to consider the global implications of actions is
the task for which deliberative planners are designed

��� Planning

Our view is that there is a role for state�based planning in robotic intelligence�
but it should not have to deal with tasks that can be routinely speci�ed as
sequences of common robotic skills When planning is necessary� the planner
operates at the highest level of abstraction possible so as to make its problem
space as small as possible

The role of reaction is to control real�time behavior The role of sequencing
is to generate well�known series of real�time behaviors In the process� the
sequencing tier will raise the level of abstraction of the activities with which
the planner will concern itself This simpli�es the planning problem because it
lets a few operators stand for large families of similar execution time actions The
ability of the RAP system to deal with iterative behavior greatly simpli�es the
planner�s representation� allowing a propositional state representation common
to classical planning to su�ce in many common situations Importantly� all three
tiers must operate concurrently and asynchronously Accomplishing this is the
key to making planning useful in a robot

The planner we are using in our experiments� AP �Elsaesser and MacMillan�
������ has a number of features which make it compelling to use for robot
planning One aspect of intelligent robots overlooked by both the planning and
robot control communities is that robots will normally not be fully autonomous
but will be working in conjunction with other agents � a human giving orders
as a minimum Multiagent control is necessary when more than one robot is
employed to carry out tasks� when a single robot has to coordinate the use of its
own resources �eg� arms and grippers�� or when multiple robots are operating
independently on multiple tasks in a shared environment

AP was designed to deal with multiagent coordination by extending its state�
based planning to reason about the conditions that hold during actions This
capability allows AP to plan activities such as two robots carrying a bulky object
The following operator is an example from a test domain Note the planner can
instantiate the variables �arm�or�robot� and �arm�or�robot� with any agent
that meets the constraints A two�armed robot or two single�armed robots might
be used The temporal relation simultaneous imposes a non�codesignation
constraint on the agents so that a very strong one�armed robot would not qualify

�Operator grasp�bulky�object

�purpose

�holding �planner �large�thing�

�

�arguments

���size�of�thing

�get�value �large�thing �size���

�preconditions

��top �large�thing clear�

�on �large�thing �something��

�constraints

��can�lift �arm�or�robot�

�� 	
� �size�of�thing��

�can�lift �arm�or�robot�

�� 	
� �size�of�thing��

�plot

�simultaneous

�grip �arm�or�robot� �large�thing�

�grip �arm�or�robot� �large�thing��

�effects

��holding �planner �large�thing�

�top �something clear�

�on �large�thing nothing���

Another attractive feature of AP for this work is that it can reason about
uncontrolled agents � a result of its original development for adversarial planning
An uncontrolled agent might be a human operating in the environment along
with a robot� or even nature AP uses a counterplanning mode to reason
about how preconditions in a plan might be negated by an uncontrolled agent�
thus thwarting the plan These problems are addressed by augmenting the plan
with operations that prevent the negative e�ects of the uncontrolled action
This amounts to reasoning about situation�speci�c preconditions� and is the way
AP addressees the qualification problem �Shoham� ����� AP can use these
adversarial reasoning capabilities as a risk assessment mechanism to consider the
probability of dangerous interactions with other agents

� Applications of the Architecture

We have applied our architecture to several robotic and even some non�robotic
tasks We will discuss some of these applications in this section Some appli�
cations use only the skill and sequencing tiers Some applications use all three
tiers For each application we will describe the task� the robot� the skills� the
RAPs� and� if applicable the plans We will also give results and lessons learned
from each application of the architecture

��� A mobile robot that recognizes people

At the NASA Johnson Space Center�s Robotic Architecture Laboratory� the �T
architecture has been used to control a robot that �nds and recognizes people
The robot�s task is to locate and approach a person wearing a speci�cally colored
shirt� crop their face� feed the pixels of the cropped image to a neural network
and then identify the person The robot is a Cybermotion K	A base with a

�

Figure 	� The Johnson Space Center robot programmed to �nd and recognize
people A color vision system is mounted on top of the robot� sonar sensors are
just below it

vfh-free-
dir

get-face

search-
color

track-
color

vfh-map

sonar-
approach

turn-
robot

recognize-
face

vfh-move

id-ready

crop-done

found-color

no-color

at-color

lost-color

at-goal

at-angle

at-person

skill blocks skill events

to RAPs

Figure
� The skill network for �nding and recognizing people

ring of 	� sonar sensors and a color vision system mounted on top �see Figure 	
We will describe how this task was implemented in the bottom two tiers of
our architecture� starting with the robot�s skills Details about the color vision
system and the neural network can be found in �Wong et al�� �����

Figure
 shows the skill network for this robot These skills were implemented
in C and executed entirely on�board the robot The skills include visual skills for
searching and tracking colors� a skill for cropping a face and a skill for recognizing

�

Figure �� Chip with color vision system and manipulator

a face There are also skills for moving the robot using obstacle avoidance �the
VFH obstacle avoidance method �Borenstein and Koren� ������� approaching a
person using sonar and turning the robot Skill events report changes in the
robot�s state and in the state of the world to the RAP system These include
signals as to the state of the color searching and tracking� the state of face
recognition and the state of the robot�s motions

The recognition task consists of several subtasks that are accomplished by
activating sets of skills and waiting for an event �or events� to trigger This
application consists of about 	� RAPs that are responsible for enabling and
disabling skill sets in order to accomplish the task and recover from errors This
application makes extensive use of the RAP context and method structures
Search RAPs cause the robot to move about our laboratory searching for a
color A history of the search is maintained in RAP memory so the robot avoids
looking in places that it has already searched

This application did not use the planning tier of the architecture However�
it does show how the bottom two tiers can perform a sophisticated task over
a long period of time �the robot searched for up to four colors over thirty or
forty minutes� The multitude of things that could go wrong �losing a color� not
recognizing a person� inability to attain the goal location� etc� demonstrated
the recovery mechanisms built into RAPs We would often �trick� the robot by
�ashing the color for which it was searching� then hiding it again and watching
the robot stop� investigate the color and then continue the search when it could
not locate the color again In a similar application� the same robot equipped
with a black and white stereo vision system used the bottom two tiers of the
architecture to �nd and pursue other agents �Huber and Kortenkamp� �����

�

��� A trash�collecting mobile robot

As part of the Animate Agent Project at the University of Chicago�s Department
of Computer Science� the robot Chip has been programmed to clean up trash
from the �oor Chip is an RWI robot with sonar sensors� a color vision system
and a manipulator �see Figure �� The color vision system is used to �nd and
identify trash and trash bins The manipulator is used to pick up and deposit
the trash This task was implemented using only the bottom two layers of the
architecture More details of this implementation can be found in �Firby et al��
����� Firby� �����

Chip uses a network of skills that include routines for moving in a given
direction while avoiding obstacles� turning to face a particular direction� �nding
an object visually� tracking an object� and reaching toward an object These
skills� which are very general in nature� can be combined in various contexts to
perform simple actions like� �nd a piece of trash� track a piece of trash and move
towards it� align with a piece of trash� and pick a piece of trash up By tracking
the trash while approaching and aligning with it� the system can compensate for
errors in the robot�s motion and errors in initial estimates of the trash item�s
location Skill events also report changes in the robot state and in the state of
the world to the RAP system These skills are written in lisp and c

Sets of skills are enabled by the middle tier of the architecture In combination
these skill sets perform tasks such as moving to a location� tracking an object�
aligning with an object� picking up an object and dropping an object RAPs
for these low�level tasks are then combined using higher�level RAPs to describe
cleaning methods at various levels of abstraction as well as methods for moving
the robot from one place to another� searching for an object� picking an object up�
and putting an object in the trash The RAPs also consult with a spatial planning
module that keeps track of the �oor area cleaned so far� and the locations of pieces
of trash that have been seen but not yet dealt with

The planner was not used in this application and all of the skills and RAPs are
implemented on the Chip robot As with the previous example� this application
uses the bottom two tiers of the architecture to perform a complex task over a
long period of time Over many trials� Chip has picked up hundreds of pieces of
trash and run for several hours without di�culty

��� A mobile robot that navigates o�ce buildings

At the MITRE Autonomous System�s Laboratory� the �T architecture has been
used to program a robot to navigate the hallways and elevators of an o�ce
building The robot is a Denning with a ring of 	� sonar sensors and a re�ective
barcode reader The robot uses sonar data for obstacle avoidance and a laser
scanner with bar�coded tags for landmark recognition The laser landmarks
consist of two coded tags The laser scanning system returns only the angle to
the tags in the robot�s coordinate system Using these angles in combination with
a rough estimate of the distance between the tags allows the robot to roughly
determine the distance and direction to the landmark when both tags are visible
Figure � depicts this domain More details about this implementation can be
found in �Firby and Slack� �����

��

ASL

Space 0

Space1

Space2

Space3

Space4

C
ha

rg
er

ASL-Door

E
le

va
to

r-
D

oo
r

#0

#1

#4 #5

#2#3

#6

#7

#8

#9

#10

#11

#12 #13

#14

#15

Waypoints
� S0S1Portal = S1S0Portal
� S1S2Portal = S2S1Portal
� S2S3Portal = S3S2Portal
� S3S4Portal = S4S3Portal

S0S1Portal

S1
S2

Po
rta

l

S2
S3

Po
rta

l

S3
S4

Po
rta

l

Spaces
� ASL
� Space0
� Space1
� Space2
� Space3
� Space4

Locations
� Charger
� ASL-Door
� Elevator-door

Figure �� The MITRE navigation task domain

Track
Hallway

Sonars

Config
Detect

Obstacles

Sonars

Config

Follow
Trajectory

Sonars

Config Hall
Blocked

Drive/Steer Cm ds

Sensors A ctuatorsTHE W ORLD

Signal Event

to RAP System

End-o-Hall
Sonars

Config
Signal Event

to RAP System

Figure �� Partial skill network for the MITRE navigation task

Figure � shows a couple of skills for the navigation task Additional skills
included watching for landmarks� moving to a landmark� and moving through
doorways The primary navigation skills are Navigation Template�based �or
NaT�based� �Slack� ���
� processes that use sonar information to avoid obstacles
while moving to a given coordinate or moving in a particular direction When
constructed properly� such skill networks allow the robot to follow halls and enter
doors independent of the speci�c hallway or door that the robot encounters Skill
events �eg� hall�blocked in the Figure �� report changes in the robot�s state
and in the state of the world to the RAP system

Using these skills� RAPs were built to do tasks such as moving to a landmark�

��

Figure �� A simulated space station maintenance robot

moving to a neighboring space and moving through a set of connecting spaces In
addition� this application used the planning tier of the architecture to construct
a plan to �nd its present location� plan a path to the elevator� navigate out of
the room� through the door� down the hall� and up to the elevator The planner
enables the system to replan the robot�s path if a hallway or doorway is blocked
and to evaluate the revised plan to make sure that no deadlines are violated If
the path to the elevator is blocked� and the resulting go�around is too lengthy�
the robot can immediately abandon that goal and return to report failure

��� Space station robots

Recently� the �T architecture has been used as a framework for ground control of
a two�armed manipulator robot maintaining a space station on orbit The idea
is for a manned� intelligent ground control station to supervise the routine main�
tenance activities of the robot� and allow the on�orbit personnel to concentrate
on scienti�c missions

In this application� the robot is a
D kinematic simulation of a three�armed
EVA Helper�Retriever �EVAHR� robot �see Figure �� carrying out maintenance
tasks around a space station� much as described in the introduction of this paper
A list of sites to be inspected or repaired is presented to the planning tier by
the ground control supervisor and a maintenance plan consisting of repairs and
inspections is generated for the day The planner then installs each plan step
on the RAPs agenda� along with the recommendation of the agent to use in the
step �arms� cameras� etc�

In the simulation� once the plan is underway� users can interactively introduce
failed grapple �xtures� failed arm joints� and gripper malfunctions Simple
failures such as failure of an arm or a grapple �xture are handled at the RAP level
Delays from these recoveries cause the planner to adjust the schedule of tasks at

�	

Figure �� A prototype space station maintenance robot

future sites An example concerns power�data attach points EVAHR will move
to the attach point which will a�ord the robot the most e�cient mechanical
access to the item being repaired When that attach point malfunctions� the
robot doesn�t discover it until it tries to attach The controlling RAP then
consults a list of alternative attach points� selects one and moves to it In some
cases� the planner notices that this new point is also a convenient access point
for the item in the next task Thus� it will omit the next move operator in the
plan and command only the next load� unload or inspect operator for the next
item

Should an arm fail� the RAP level is able to substitute an alternative agent
�eg� left arm instead of the recommended right arm� and this will cause the
planner to adjust agent assignments for future tasks More drastic failures
will cause the planner to abandon all tasks at a given site And with enough
malfunctions the planner abandons the entire plan and directs the robot back to
its docking station

After implementation on the simulator� the planner and RAPs system was
ported to a hardware manifestation of such a service robot in a dual�armed
facility known as ARMSS �Automatic Robotic Maintenance of Space Station�
ARMSS consists primarily of two � degree�of�freedom Robotic Research manip�
ulators� each mounted and moveable on vertical towers which in turn can move
horizontally via a �oor gantry �see Figure �� These arms can reach a portion
of a space station truss on which are mounted a variety of components that can
be inspected or repaired Camera views are available from each end e�ector and
from the towers and the �oor

What was of interest in this project was construction of the reactive tier of
the architecture out of an existing suite of software which emulated an actual

�

two�armed robot planned for space station Alpha Existing ARMSS modules
included inverse kinematic trajectory generation� velocity and position sensing
and control� force�torque sensing and control� and ratchet and gripper control
These software modules could be accessed via the TelRIP Ethernet �Graves et al��
���
� communications protocols Thus� the skill system was simply functions that
called and received signals from those modules RAP primitives were encoded
to enable and disable those skills and the RAPs from the EVAHR simulation
were used to command the ARMSS system to changeout space station items
In this manner� two people were able to command the arms from RAPs within
two weeks time In a month the same two people had a previously teleoperated
facility autonomously executing item changeouts as commanded by the AP tier

In general� the di�erence between running �T� on a simulator and on actual
robot hardware was primarily in the interfaces and the level of autonomy The
planner and the RAPs were essentially unchanged

� Allocating knowledge across the architecture

The core �T software tools� along with many of the RAPs and AP operators
are easily transportable across our projects The individual skills and events are
easily transportable across di�erent projects using the same platform� but tend
to be hardware speci�c One important research issue is how to decide whether
a certain aspect of a task belongs at the skill level� the sequencer level or the
planning level Our work in applying the architecture to the wide variety of
projects described above has led to a preliminary set of dimensions on which to
divide tasks across the levels

The �rst dimension that we use for dividing a task is time The skill level
has a cycle time on the order of milliseconds� the sequencer level� tenths of
seconds� and the planning level� seconds to tens of seconds� This imposes two
constraints First� if something must run in a tight loop �ie� obstacle avoidance�
then it should be a skill Second� if something runs slowly �ie� path planning�
then it should not be a skill� as other skills depending on its answer will be slowed
down unduly Similar constraints hold when deciding whether something should
be at the sequencer level or the planner level

The second dimension that we use for dividing a task is bandwidth The
data connection between di�erent skills in the skill manager is very fast and
often carries a lot of data� like images� sonar values� and real�time tracked�target
position updates On the other hand� the interface between the skill system and
the RAP system consists primarily of commands to enable and disable skills and
signals that certain skill�based events have occurred This restricted bandwidth
interface allows a very modular connection and easy distribution of the various
tiers of the architecture across di�erent machines �i�e�� the connection between
skills and RAPs can be implemented via TCP�IP� Thus� skills are generally
written to abstract perceptual information so that only small amounts of data

�In the actual described applications� the skills executed anywhere from ���hz to ��hz�
depending on the implementation� These speeds were always more than su�cient for the
described tasks�

��

are passed to RAPs A RAP that requires a large amount of data �e�g�� an image�
should be written as a skill

The third dimension that we use for dividing a task are the task requirements
Each level of the architecture has built�in functionality that makes certain op�
erations easier For example� RAPs has mechanisms for skill selection� so if a
skill contains many methods for handling di�erent contingencies� then it might
be useful to break that skill into several smaller skills for each contingency and
let a RAP choose among them Similarly� if a RAP starts doing look�ahead
search� resource allocation or agent selection� then it may be better o� as a set of
AP operators� which can then take advantage of AP�s built�in support for these
functions

The �nal dimension that we use for dividing a task is the modi�ability that
we desire The nature of reactive skills requires that the possible connections
between skills be speci�ed in advance Furthermore� skills must run very quickly
and typically must be compiled in run�time networks In contrast� the RAP
system and planner are both based on interpreters and their behavior can be
easily changed by adding or modifying RAP descriptions and planning operators
When a certain routine will require on�line modi�cation by a human operator�
then it should be put at the sequencer or planner level� not at the skill level

� Comparison With Other Work

Autonomous agent architectures fall into two broad categories� those designed
from the outset to control physically embedded agents� and those initially de�
signed to explore issues in general intelligence and later adapted for controlling
physical agents Examples of the former sort include subsumption �Brooks� ������
TCA �Simmons� ������ and AURA �Arkin� ����� Examples of the latter include
SOAR �Laird et al�� ������ and the architecture used in the Guardian program
�Hayes�Roth� ����� We consider �T to be an example of the former sort� that
is� an architecture designed from the outset to control physical agents� and
mobile robots in particular Despite a large overlap between these two areas
of research� we believe that there are certain issues that are unique to physical
agents For example� mobile robots can be expected to have stricter limitations
on the amount of computing power at their disposal Mobile agents may also
face serious consequences if certain deadlines imposed by the environment are not
met �though applications such as Guardian� which monitors patients in intensive
care� face issues of similar gravity�

��� Robotic architectures

We begin with subsumption� arguably the best�known departure from the tra�
ditional sense�plan�act paradigm The subsumption architecture is based on the
idea of decomposing the problem of robot control by task rather than by function
Most architectures �including� to an extent� �T� decompose the problem into
functional modules such as planning� sensor processing� execution monitoring and
contingency response Brooks argues that such designs are inherently ine�cient

��

because they force each functional module to be powerful enough to support any
task the robot may be called upon to perform

Rather than develop general functional modules� the subsumption architec�
ture advocates the development of more narrowly focused mechanisms called
behaviors Each behavior is designed to control only a single task� allowing the
computation within the behavior to be optimized for that task Each behavior is
coupled directly to the robot�s sensors and actuators Con�icts among behaviors
are resolved by an arbitration mechanism

Subsumption� and numerous variations on the theme �eg �Payton� �������
are all homogeneous architectures The structure of behaviors and the way in
which behaviors interact is the same throughout the architecture There is no
architectural support for abstraction� planning� or resource management In fact�
the design philosophy underlying subsumption speci�cally calls for such features
to be avoided

We believe that the subsumption position on plans and abstraction is too
extreme Although we agree with the motivating premise that there are serious
shortcomings in the traditional sense�plan�act approach when applied to embod�
ied agents� we believe that these problems can best be solved by changing the
way in which plans are represented and used� not by discarding them entirely

A three�tiered derivative of subsumption� SSS� was developed by Connell
�Connell� ���	� Subsumption makes up the middle tier of SSS� not� as one
might suppose� the bottom tier� which is a collection of traditional servo�control
loops The ability of SSS to respond to contingencies is therefore limited by
subsumption�s �nite�state�machine model SSS adds a �contingency table� rep�
resentation� making programming somewhat less cumbersome than constructing
FSA�s directly� but it is still quite restrictive SSS has only been demonstrated on
tasks involving pure navigation �although it performs this task with impressive
speed�

Simmons� Task Control Architecture �TCA� �Simmons� ����� has been suc�
cessfully used on a number of real�world robots� but it is very di�erent from

�T There are essentially no tiers in TCA A task net is constructed for the
robot which is similar to a task�net in RAPs Each node in the task tree can be
decomposed further or is a primitive which interfaces with the robot� or other
nodes� through a sophisticated message�passing algorithm These messages are
processed through a central router� and thus TCA is more like a robot operating
system There are no explicit representations for expressing relationships among
tasks TCA task trees are manipulated directly by C function calls It is therefore
incumbent on the programmer to mentally compile the desired control constructs
into the appropriate calls

Furthermore� because TCA lacks a representation for task trees it is cum�
bersome to employ a general planner� since the output of the planner has to be
translated into C code and compiled� or an interpreter that translates the output
of the planner into TCA calls has to be written This may not be a di�cult task�
depending on the planner� but it is not a generalized procedure as is the use of
the planner in �T

Finally� the view of cognizant failure is quite di�erent in TCA Since the only
place to put knowledge of failure is in the task nets� in TCA one builds exception

��

subnets as add�ons to the �normal� task trees �T on the other hand deals with
failure at three levels� environmental variation in the skills� variation in routine
activity in the RAPs and variation in time and resources in the planner

Of the robot architectures in use� �T has its strongest similarity to ATLANTIS
�Gat� ���	� ATLANTIS and �T grew out of the same work � hence their
similarity The chief di�erences between the two is that ATLANTIS leaves much
more control at the sequencing tier In ATLANTIS� the deliberative tier must
be speci�cally called by the sequencing tier

Noreils �Noreils and Chatila� ����� describes an architecture that integrates
planning and reactivity Noreils� architecture has three levels �called planning�
control� and functional� which correspond roughly to the three main components
of �T The control level is based on a formalism that is similar to RAPs
The principal di�erence between Noreils� formalism and RAPs is that Noreils�
formalism distinguishes between failures and non�failures� whereas the RAPs on�
tology simply considers multiple outcomes without requiring them to be further
categorized We believe this is an important distinction because as the tasks
a robot performs become more complex the division between failure and non�
failure can become very fuzzy� and requiring the user to make this distinction
can become burdensome Noreils�s architecture has been implemented on two
robots� with some of the computation being done o��board

There are numerous architectures which are speci�c to mobile robot naviga�
tion AURA �Arkin� ����� is super�cially similar to �T It based on a fundamental
building block of a motor schema� a vector �eld associated with a goal or an
obstacle Motor schemas are combined by vector addition to produce a resultant
which drives the robot A second �tier� enables combinations of these vector
�elds to run concurrently to produce the desired e�ect But this second level
lacks many of the context based reordering capabilities of RAPs This is because
AURA is concerned with generating a world model at this second level that is
connected directly to the low level motor schemas In �Tthe sensing from the
control tier uses explicit task context to determine its meaning to the rest of the
architecture

The control community also has some noteworthy multi�tiered architectures
NASREM �Albus et al�� ����� was an early reference model for telerobotic control
It was in essence a many tiered model which predated �T in its provision for
increasing abstraction and increasing cycle time as it moved from the servo level
to the reasoning levels With the exception of maintaining a global world model�
NASREM� in its original inception� provided for all the data and control paths
that are present in �T But NASREM was a reference model� not an imple�
mentation The subsequent implementations of NASREM followed primarily
the traditional sense�plan�act approach and were mainly applied to telerobotic
applications� as opposed to autonomous robots A notable exception was the
early work of Blidberg �Blidberg and Chappell� �����

Saridis� intelligent control architecture �Saridis� ������ while having three
layers� is fundamentally di�erent from �T in its philosophy and implementation
The architecture begins with the servo systems available on a given robot and
augments them to integrate the execution algorithms of the next level� using
VXWORKS and the VME�bus The next level consists of a set of coordinating

��

routines for each lower subsystem� eg� vision� arm motion� navigation These are
implemented in Petri Net Transducers �PNTs�� a kind of scheduling mechanism�
and activated by a dispatcher connected to the organizational level The orga�
nizational level is a planner implemented as a neural network of the Boltzmann
variety Essentially the neural network �nds a sequence of actions which will
match the required command received as text input� and then the dispatcher
executes each of these steps via the network of PNT coordinators

The emphasis in this architecture is increasing precision with decreasing
intelligence �IPDI� This sounds vaguely like the abstraction hierarchy of �T
But the intelligence of the system stems from �� probability models of task
decomposition and execution� and 	� functions that minimize a measure of
entropy at each layer The result seems to be sequences of actions � from the
neural network and then from the coordinators � that if executed will have the
highest probability of success

The IPDI architecture has only been implemented on a PUMA manipulator
robot and then apparently only partially so Thus it is di�cult to judge the
relative merits of a neural network planner versus a symbolic planner or the
RAPs system versus a dispatcher of Petri Net coordinators without a detailed
analysis which is beyond the scope of this paper It appears however� that IPDI
contains little if any provision for a dynamically recon�gurable skill network�
cognizant failure� or recovery from such failures at every level As well� it also
appears that IPDI is currently only applicable to robots using VXWORKS and
the VME�bus

��� Non�robotic agent architectures

Many architectures have been proposed for controlling intelligent agents We
focus here on those that have been applied to controlling physical robots

The Guardian architecture of Hayes�Roth is a blackboard architecture de�
signed for controlling embedded �though not necessarily embodied� agents The
architecture is divided into a cognitive component and a perception�action com�
ponent The perception�action component is controlled by the cognitive compo�
nent Thus� the Guardian architecture is similar to �T� but with sequencing and
deliberation performed by the same mechanism The deliberative component can
modulate the performance of the perception� action component� as well as its
own performance� according to the current situation in the world Guardian rep�
resentation� but does not commit to any particular representation for describing
the interrelationships among tasks

The major capability of the architecture is the ability to migrate decision�
making from the slow deliberative component into the faster perception�action
component by reasoning about the current situation For example� Guardian
can reason about the types and sampling rates of perceptual tasks that need
to be performed to support a given goal �T� by contrast� takes the position
that rather than reason about which control mode is appropriate according to
the task environment� that both modes must be operating constantly no matter
what the environment The appropriate adaption arises automatically when the
sequencer activates and deactivates skill sets according to the current situation�

��

while the planner reasons about the overall goal by projecting alternative futures

�T does not explicitly distinguish between perceptual tasks and non�perceptual
tasks� perceptual tasks are treated like any other task Perceptual tasks produce
results �information� that can be preconditions of other tasks� but this is all
handled with one unifying mechanism We �nd that even in very complex
cases� the appropriate behavior arises naturally from encoding tasks in the RAP
representation

Soar �Laird et al�� ����� is a production system with the ability to switch
between deliberative and more reactive modes of reasoning via a learning mecha�
nism that caches deliberative results Soar has been augmented with a perceptual�
motor interface �Weismeyer� ����� which is constructed from the same basic
computational mechanism as the rest of the system Soar thus collapses all of
the capabilities of �Tinto a single mechanism Like Guardian� Soar embraces the
concept of representation� but does not commit to a particular task representa�
tion

�T shares many aspects of Cypress �Wilkins et al�� ����� Our AP planner
has similar expressive power at an abstract level as SIPE� RAPs compares fa�
vorably with PRS But because RAPs were designed to allow integration with
conventional AI planners� we did not have to write an interlingua such as ACTs
to achieve such integration Additionally� Cypress does not specify a canonical
interface to the control tier as does �T

CIRCA �Musliner et al�� ���
� has been used only with simulations� but it
does make a strong claim for meeting hard�real time constraints While we have
the ability in our architecture to request that speci�c skills run at a certain
frequency� we have no way of enforcing this request as there is no interruption of
skills As our robots take on more complex tasks� we believe that we will need to
address hard real�time issues� though for the record� none of the tasks described
in the previous section required such a capability

� Future work and conclusions

We have described a robot control architecture that integrates deliberative and
situated reasoning in a representational framework that �ows seamlessly from
plan operators to continuous control loops The architecture has been demon�
strated successfully in a wide range of mobile and manipulator robot projects�
both real and simulated We have found that the division of labor among the
tiers of the architecture permits the generalization of knowledge across multiple
projects We have also found that our software tools allow for rapid implemen�
tation of complex control systems

We believe that �T can ease the development of software control code� which
is notoriously complex� on a wide variety of robot systems This is especially
true in the case of multiple robotic subsystems There are two reasons we
believe this is true First� the skill manager framework abstracts away the need
for the programmer to explicitly connect the data coming to and from a skill
This was especially evident in the mobile robot tracking project� where we used
skills for movement and obstacle avoidance and a separate vision system with
skills for tracking moving objects When we integrated the two systems it was

��

straightforward to feed the output of the vision tracking skill to the input of the
obstacle avoidance skill so that the robot could follow people while still avoiding
obstacles Similarly� when we added a color tracking system to the same robot�
the code integration was greatly simpli�ed by the structure of the skill manager

Second� by decoupling the real�time execution of skills from sequencing and
planning the use of those skills� we allow for modi�cations of sequences and
plans without having to reinitialize the robot controllers Our approach lends
itself naturally to a bottom�up approach to programming robots whereby lower
level skills are written and debugged separately� before being integrated together
to accomplish a task

Recently� we have begun to investigate �T�s use in non�robotic control systems
One example is a modi�ed �T that acts as a World Wide Web �WWW� robot
This is being accomplished by augmenting the skill tier of the architecture with
a set of primitives for retrieving and manipulating Universal Resource Links
�URLs� The task description language of the AP and RAP systems lends itself to
the kinds of activities taken when users must respond to environmental disasters
For example� in response to a forest �re� the WWW robots search the Web to
retrieve maps of the location� and then use those maps to create a logistics plan
for �ghting the �re This work is just beginning� but the task and planning
languages embodied in the architecture lend themselves neatly to the creation of
interactive decision aids which require both �sensing� and �action�

We are also exploring the use of �T for managing closed ecological life support
systems �CELSS� Previous CELSS experiments such as those conducted in the
US and in Russia have shown that most of the crew�s time is spent in crop
management and monitoring environmental control systems In an e�ort to
automate some of these processes we have developed the skill and sequencing
tiers of the architecture to control a simulation of an o	�co	 gas exchange system
with a crew of three and a crop of wheat The skills consist of setting valve
openings� plant lighting levels� suggesting crew activity and monitoring the gas
�ows and the storage levels We are also developing AP plan operators which
will determine the planting cycles of various crops to support gas exchange as
well as dietary requirements of the crew

Having achieved this framework we have also begun to investigate the in�
tegration of other AI disciplines Natural language is already being researched
at the RAPs level �Martin and Firby� ����� Machine learning techniques can
be investigated from case�based reasoning in the planning tier to reinforcement
learning in the skill tier �Bonasso and Kortenkamp� ����� The architecture
could also bene�t from combining it with concurrent perception architectures
such as those used to support mapping �Kuipers and Byun� ����� Kortenkamp
and Weymouth� �����

References

�Albus et al�� ����� JS Albus� R Lumia� and HG McCain Nasa�nbs
standard reference model for telerobot control system architecture �nasrem�
Technical Report Tech Note ��	
�� NASA SS�GFSC���	�� National Bureau
of Standards� ����

	�

�Arkin� ����� Ron Arkin Motor schema�based mobile robot navigation
International Journal of Robotics Research� ����� ����

�Blidberg and Chappell� ����� DR Blidberg and SG Chappell Guidance and
control architecture for the eave vehicle IEEE Journal of Ocean Engineering�
OE��������������� ����

�Bonasso and Kortenkamp� ����� R Peter Bonasso and David Kortenkamp An
intelligent agent architecture in which to pursue robot learning In Proceedings
of the MLC�COLT ��� Robot Learning Workshop� ����

�Bonasso et al�� ���	� R Peter Bonasso� HJ Antonisse� and Marc G Slack A
reactive robot system for �nd and fetch tasks in an outdoor environment In
Proceedings of the Tenth National Conference on Arti�cial Intelligence� ���	

�Borenstein and Koren� ����� Johann Borenstein and Yoram Koren The Vector
Field Histogram for fast obstacle�avoidance for mobile robots IEEE Journal
of Robotics and Automation� ��
�� ����

�Brooks� ����� Rodney A Brooks A Robust Layered Control System for a
Mobile Robot IEEE Journal of Robotics and Automation� 	���� ����

�Connell� ���	� Jonathon H Connell SSS� A hybrid architecture applied to
robot navigation In Proceedings IEEE International Conference on Robotics
and Automation� ���	

�Elsaesser and MacMillan� ����� Chris Elsaesser and Richard MacMillan Rep�
resentation and algorithms for multiagent adversarial planning Technical
Report MTR���W���	��� The MITRE Corporation� ����

�Elsaesser and Slack� ����� Chris Elsaesser and Marc G Slack Integrating
deliberative planning in a robot architecture In Proceedings of the
AIAA	NASA Conference on Intelligent Robots in Field
 Factory
 Service
 and
Space �CIRFFSS ����� ����

�Firby and Slack� ����� R James Firby and Marc G Slack Task execution�
Interfacing to reactive skill networks In Working Notes� ���� AAAI Spring
Symposium on Lessons Learned from Implemented Architecture for Physical
Agents� ����

�Firby et al�� ����� R James Firby� Roger E Kahn� Peter N Prokopowicz� and
Michael J Swain An architecture for vision and action In International Joint
Conference on Arti�cial Intelligence �to appear�� Montreal� Canada� August
���� IJCAI

�Firby� ����� R James Firby An investigation into reactive planning in complex
domains In Proceedings of the National Conference on Arti�cial Intelligence
�AAAI�� ����

�Firby� ����� R James Firby Adaptive Execution in Complex Dynamic Worlds
PhD thesis� Yale University� ����

	�

�Firby� ����� R James Firby Lessons learned from the animate agent project
In Working Notes� ���� AAAI Spring Symposium on Lessons Learned from
Implemented Architecture for Physical Agents� ����

�Gat et al�� ����� Erann Gat� R James Firby� and David P Miller Planning
for execution monitoring on a planetary rover In Proceedings of the Space
Operations Automation and Robotics Workshop� ����

�Gat� ���	� Erann Gat Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real�world mobile robots In
Proceedings of the National Conference on Arti�cial Intelligence �AAAI�� ���	

�Graves et al�� ���
� Sean Graves� Larry Ciscon� and JD Wise A telerobotic
interface protocol In Proceedings of IEEE International Confernence on
Robotics and Automation� ���

�Hayes�Roth� ����� Barbara Hayes�Roth An architecture for adaptive intelligent
systems Arti�cial Intelligence� �	� ����

�Huber and Kortenkamp� ����� Eric Huber and David Kortenkamp Using
stereo vision to pursue moving agents with a mobile robot In ���� IEEE
International Conference on Robotics and Automation� ����

�Kortenkamp and Weymouth� ����� David Kortenkamp and Terry Weymouth
Topological mapping for mobile robots using a combination of sonar and
vision sensing In Proceedings of the Twelfth National Conference on Arti�cial
Intelligence �AAAI����� ����

�Kortenkamp et al�� ���
� David Kortenkamp� Marcus Huber� Charles Cohen�
Ulrich Raschke� Clint Bidlack� Clare Bates Congdon� Frank Koss� and Terry
Weymouth Integrated mobile robot design� Winning the AAAI��	 robot
competition IEEE Expert� ����� August ���

�Kuipers and Byun� ����� Benjamin J Kuipers and Yung�Tai Byun A robot
exploration and mapping strategy based on a semantic hierarchy of spatial
representations Robotics and Autonomous Systems� �� ����

�Laird et al�� ����� John E Laird� Allen Newell� and Paul S Rosenbloom Soar�
An architecture for general intelligence Arti�cial Intelligence�

���� ����

�Martin and Firby� ����� Charles E Martin and R James Firby Generating
natural language expectations from a reactive execution system In Proceedings
of the �th Cognitive Science Conference� Chicago� IL� ����

�Miller et al�� ����� David P Miller� Marc G Slack� and Chris Elsaesser An
implemented intelligent agent architecture for autonomous submersibles In
Intelligent Ships Symposium Proceedings� Intelligent Ship Technologies for the
��st Century� ����

�Miller� ����� David P Miller A plan language for dealing with the physical
world In Proceedings of the Third Annual Computer Science Symposium on
Knowledge Based Systems� Columbia SC� ����

		

�Musliner et al�� ���
� David J Musliner� Ed Durfee� and Kang Shin CIRCA�
A cooperative� intelligent� real�time control architecture IEEE Transactions
on Systems
 Man and Cybernetics� 	
���� ���

�Noreils and Chatila� ����� Fabric Noreils and Raja Chatila Plan execution
monitoring and control architecture for mobile robots IEEE Transactions
on Robotics and Automation� 	� ����

�Payton� ����� David Payton Exploiting plans as resources for action In
Workshop on Innovative Approaches to Planning
 Scheduling
 and Control�
San Diego� CA� November ���� DARPA

�Saridis� ����� GN Saridis Architectures for intelligent controls In Gupta and
Sinhm� editors� Intelligent Control Systems� Theory and Applications IEEE
Press� ����

�Shoham� ����� Y Shoham Reasoning about Change MIT Press� Cambridge�
MA� ����

�Simmons� ����� Reid Simmons An architecture for coordinating planning�
sensing and action In Proceedings of the Workshop on Innovative Approaches
to Planning
 Scheduling and Control� ����

�Slack� ���	a� Marc G Slack Computation limited sonar�based local navigation
In Proceedings of the AAAI �� Spring Symposium on Selective Perception�
���	

�Slack� ���	b� Marc G Slack Sequencing formally de�ned reactions for robotic
activity� Integrating raps and gapps In Proceedings of SPIE�s Conference on
Sensor Fusion� ���	

�Slack� ���
� Marc G Slack Navigation templates� Mediating qualitative
guidance and quantitative control in mobile robots IEEE Transactions on
Systems
 Man and Cybernetics� 	
�	�� ���

�Weismeyer� ����� Mark Weismeyer New and improved Soar I�O Technical
report� University of Michigan� ����

�Wilkins et al�� ����� David E Wilkins� Karen L Myers� John D Lowrance� and
Leonard P Wesley Planning and reacting in uncertain dynamic environments
Journal of Experimental an Theoretical AI� �� ����

�Wong et al�� ����� Carol Wong� David Kortenkamp� and Mark Speich A mobile
robot that recognizes people In Proceedings of the ���� IEEE International
Conference on Tools with Arti�cial Intelligence� ����

�Yu et al�� ����� Sophia T Yu� Marc G Slack� and David P Miller A
streamlined software environment for situated skills In Proceedings of the
AIAA	NASA Conference on Intelligent Robots in Field
 Factory
 Service
 and
Space �CIRFFSS ����� ����

	

