Using Stereo Vision to Pursue Moving Agents with a Mobile Robot

Eric Huber and David Kortenkamp
Metrica Inc. Robotics and Automation Group
NASA Johnson Space Center — ER4
Houston, TX 77058

{huber, korten } @aio.jsc.nasa.gov

Abstract

To interact effectively with humans, mobile robots will
need certain skills. One particularly important skill is the
ability to pursue moving agents. To do this, the robot
needs a robust visual tracking algorithm and an effective
obstacle avoidance algorithm, plus a means of integrating
these two behaviors in a seamless manner. In this pa-
per we introduce the prorimity space method as a means
for performing real-time, behavior-based control of visual
gaze. We then show how this method is integrated with
robot motion using an intelligent control architecture that
can automatically reconfigure the robot’s behaviors in re-
sponse to environmental changes. The resulting imple-
mentation pursues people and other robots around our
laboratory for extended periods of time.

1 Introduction

An important, yet difficult task for mobile robots is
to pursue a moving agent while still performing obstacle
avoidance. To perform this task, the robot needs a ro-
bust tracking algorithm and an effective obstacle avoid-
ance algorithm, plus a means of integrating these two
behaviors in a seamless manner. The tracking algorithm
has to maintain its hold on the moving agent even when
the robot is swerving to avoid obstacles. The obsta-
cle avoidance system must arbitrate between tracking
the agent and avoiding obstacles; plus adjust the robot’s
speed as a function of the agent’s speed and distance. In
this paper, we describe a mobile robot system that can
pursue moving agents (people or other robots) using a
new approach for controlling stereo gaze while avoiding
other obstacles using a sonar-based obstacle avoidance
system. These two behaviors are integrated using a soft-
ware architecture that can automatically reconfigure the
robot’s behaviors in response to environmental changes.

Our goal is to build a mobile robot that can inter-
act with people to help them perform tasks. This in-
teraction must be natural and driven by the robot’s

own autonomous goals and behaviors. We believe that
this kind of interaction i1s only possible with a real-
time, high-bandwidth sensory system coupled with an
intelligent control architecture. If either is lacking, the
robot will not be capable of performing many important
tasks in complex and dynamic environments. In addi-
tion, coupling a real-time, high-bandwidth sensory sys-
tem to an intelligent architecture raises many important
research issues. Some issues that we have dealt with in
this research are: Integrating independent motion of the
robot’s head, torso and wheels; deciding which aspects of
robot motion are controlled by which software elements;
and using active vision techniques to abstract critical in-
formation from the high-bandwidth sensory system in
real-time.

The approach to acquisition and tracking described in
this paper uses both stereo and motion measurements;
as such it 1s different from systems that rely solely on
motion detection (e.g., [1]). Our measurements are based
on correlation of visual texture rather than simply frame
differencing or measuring optical flow alone. Thus, our
system tracks any object of sufficient texture and does
not currently require a model of the object.

In this paper we will first present the stereo vision
system that the robot uses to track an agent. Then we
will show how we integrated this vision system onto a
mobile robot with obstacle avoidance.

2 The stereo vision system

The stereo vision system we use for pursuing consists
of two B&W CCD cameras mounted on a pan-tilt-verge
head, which itself is mounted on the mobile robot (see
Figure 1). In order to efficiently process the enormous
amount of information available from the cameras, we
use techniques that have recently been developed by the
active vision research community [2, 3]. In particular,
we address the issue of gaze control, i.e., where to focus
attention and visual resources. The basis of our stereo vi-
sion system is the PRISM-3 system developed by Keith

Proceedi ngs 1995 | EEE Conference on Robotics and Autonmation



Figure 1: The stereo vision system is mounted on top of
our robot; the sonar sensors are just below it.

Nishihara [4]. First, we give a short overview of the
PRISM-3 vision system, then we describe how we ex-
tended the PRISM-3 system to allow it to acquire, track
and re-acquire moving agents.

2.1 The PRISM vision system

The PRISM-3 stereo vision system is the embodiment
of Keith Nishihara’s sign correlation theory [4]. This the-
ory is an extension of work by Marr and Poggio [5] that
resulted in a stereo matching algorithm consistent with
psychophysical data. The PRISM system employs ded-
icated hardware including a Laplacian-of-Gaussian con-
volver and a parallel sign correlator to compute spatial
and/or temporal disparities between correlation patches
in each image. Stereo measurements are made by cor-
relating sets of patches along the epipolar lines of left
and right image pairs. Motion measurements are per-
formed (in effect) by correlating a reference patch from
a previous image frame with a tessellation of patches in
the current frame. Programmable gate array technology
makes it possible to perform a set of correlations with
32 by 32 pixel windows at 36 different disparities in 100
microseconds. The speed and relevance of data provided
by this system makes it well suited for the study of real-
time active vision [6]. Other stereo vision systems (e.g.,
[7]) have also benefited from hardware accelerated cor-
relation.

2.2 A behavior-based approach to active vi-
sion

As delivered, the PRISM system provided software
for tracking objects in a very simplistic way. We have
extended this basic software set with a behavior-based
system that provides more robust tracking and also per-
forms other tasks such as searching. This subsection
describes our behavior-based, active vision system.

2.2.1 The proximity space

As a means to focus attention and ensure a high degree of
reactivity to the environment we developed a method in
which all of the visual processing is confined to a limited
three-dimensional region of space called the prozimaty
space. For maximum efficiency this method capitalizes
on measurements within the horopter that can be made
with the least expense (time) and minimizes the number
of measurements necessary per frame.

The horoptor is a region of near zero disparity in the
stereo field of view which lends itself well to accurate,
high speed correlation [8]. This region is roughly cen-
tered about the point of intersection (fization point) of
the optical axes of the right and left cameras. For gaze
control, the horopter i1s of particular significance since
the surface texture of objects occupying this region is
readily detected (correlated).

Our method employs a nearly cubic volume, typically
located in and about the horoptor, which 1s the proxim-
ity space (see Figure 2 d). Within the bounds of this
space an array of stereo and motion measurements are
made in order to determine which regions of the space
(measurement cells) are occupied by surface material,
and what the spatial and temporal disparities are within
those regions. We will refer to a positive identification of
surface material within a measurement cell as a “texture-
hit” and a negative as a “texture-miss”. Surface material
is identified by detecting visual texture, 1.e., variations
in light intensity across a region of the image. Confin-
ing our measurements in this manner ensures that they
remain focused and limited in number. As a result, we
can perform all of our computation within a 33ms (30Hz
frame rate) cycle.

2.2.2 Attentive behavior competition

One of our main objectives is to develop a method for
gaze control that allows us to acquire and track natural
salient features in a dynamic environment. Using the
proximity space to focus our attention, we developed a
method for moving the proximity space within the field
of view. This method is inspired by recent research into



"l/l mage Frane

Proximty Space

== _ Mdtion Vector

Figure 2: a. Stereo measurements within proximity space; b. Motion measurements; c. Pan-tilt-verge control reference
vector; d. Texture-hits/misses within the proximity space; e-g. Examples of behavior-based control vectors.

behavior-based approaches [9], which combine simple al-
gorithms (called behaviors) in a low-cost fashion.

In our system, each behavior assesses information
within the proximity space in order to effect the future
position of the proximity space. The information being
assessed by each behavior is simply the texture-hits and
texture-misses within the proximity space. Based on its
unique assessment, each behavior generates a vector, the
direction and magnitude of which will influence the posi-
tion of the proximity space. With each image frame, the
behavior-based system produces a new set of assessments
resulting in a new set of vectors. When a number of be-
haviors are active concurrently, their vectors are added
together to produce a single resultant vector, which con-
trols the position of the proximity space. We have devel-
oped several sets of gaze control behaviors that produce
several modes of robust tracking and exploratory behav-
ior (see Figure 2 e-g). These will be described in the
following subsections.

2.3 An example of using proximity spaces

To test our method we chose a task that imposes
many real-time requirements and is important to mobile
robots. A task well suited to our goals is that of acquir-
ing, tracking and re-acquiring a moving agent (either a

person or another robot).

2.3.1 Acquiring the agent

Before an object can be tracked it must be acquired.
To do this, the robot needs to search a given volume of
space 1n an efficient manner. This is achieved by mechan-
ically moving the fixation point of the stereo camera pair
through large sweeping trajectories while quickly mov-
ing the proximity space in search of substantial surface
material (i.e., texture-hits in at least 25% of the mea-
surement cells) within the field of view. Once registered,
the system quickly establishes fixation on the surface and
starts to track it. A key point of this method is that the
system does not require a model of an object in order
to acquire 1it, rather its attention 1s attracted to the first
object that its gaze comes across. The object also need
not be moving to be acquired; acquisition relies purely
on the existence of surface texture.

2.3.2 Tracking the agent

Tracking of a moving agent involves combining several
simple behaviors to move the proximity space to follow
the agent. Our initial attempt at tracking used two be-
haviors provided with PRISM-3 system. The first mea-
sures motion disparity and produces a 2D-vector that



attempts to move the proximity space in the direction of
motion (see Figure 2 b). The second behavior measures
stereo disparity (depth) and produces a 1D-vector that
attempts to move the proximity space closer to or fur-
ther from the stereo head (see Figure 2 a). However, we
found that using only these two behaviors, the system
would track the agent for a few minutes, but accumu-
lated correlation errors eventually caused the proximity
space to fall off of the agent. Also, rotations of the agent
quickly cause the system to lose track of the agent be-
cause the rotation causes the motion disparity vector to
point off the rotating agent.

To compensate for these deficiencies, we added a new
behavior that produces a 2D-vector pointing from the
centroid of the proximity space to the centroid of the
texture-hits within that space. If the proximity space
approaches the occluding contour (boundary) of an ob-
ject, the texture attractor behavior will tend to direct it
away from the nearby depth discontinuity and back onto
the body of the agent. This behavior will sometimes be
in direct conflict with the influences of the motion dis-
parity behavior. When the texture attraction behavior
is well positioned on the body of the agent (i.e., it de-
tects an even distribution of texture-hits), it produces
a vector of low magnitude. An interesting side effect of
the texture attractor behavior is that it also tends to
direct the proximity space away from foreign bodies of
unlike disparity. Thus, partially occluding (intervening)
object boundaries have the same effect as occluding con-
tours on the tracked body itself. For example, as the
agent moves behind a desk or chair the texture attrac-
tor behavior causes the proximity space to be repulsed
by the intervening obstacles and towards the head and
chest (when tracking people).

An additional problem when tracking terrestrial
agents 1s that, at times, accumulated correlation errors
cause the proximity space to slowly migrate all the way
down the body and “slip” onto the floor. This is due
to the lack of depth discontinuity at the point of con-
tact between the agent and the floor. To remedy this,
we added a simple behavior that produces a 1D-vector
that biases the proximity space upward. The result 1s
that the proximity space tends to settle on the head or
upper torso when tracking a human. An added benefit
of this 1s that the human face provides a high degree of
unique texture and thus lends itself well to Nishihara’s
algorithm [4]. Finally, this behavior keeps measurements
away from the less stable areas of the body such as the
arms and legs.

The nature of binocular geometry imposes more in-
herent difficulties to the tracking task; varying distances
to the moving agent cause changes in several key pa-
rameters such as image and disparity scale. To compen-

sate for these scale variations we developed a proximity-
space-sizing behavior (see Figure 2 g). Using area mo-
ment computations on texture-hits and texture-misses,
this behavior acts to resize the proximity space until it
is properly scaled to the agent’s image. This behavior is
different from the others in that it influences the scale of
the proximity space and not its position. This method of
auto-normalization also allows us to track objects of sig-
nificantly disparate scales such as softballs and humans,
without having to adjust any “magic” numbers.

Each of the behaviors described above runs concur-
rently and their resultant vectors are added to determine
the next position of the proximity space. An important
point to note about this scheme for tracking is that it
does not require that the body be moving in order to
track it. This is because the motion disparity behavior
is only one of several that combine to maintain focus of
attention on the agent. As long as the agent remains
distinct (depth-wise) from its surroundings, the robot
will track it whether the agent i1s walking briskly, sitting
down, standing back up, even leaping around. The sys-
tem 1s, however, brittle to full occlusions because they
tend to “pinch” the proximity space between depth dis-
continuities until it finally loses track of the body alto-
gether.

2.3.3 Eye-head coordination

The previous subsection discussed a method for mov-
ing the proximity space electronically within the field-
of-view. An important point, which remains to be ad-
dressed, is how to move the head in pan, tilt and verge
to keep the agent within the center of the field-of-view
of both cameras. In effect, as the proximity space moves
to track the agent, the fixation point of the cameras is
moved to follow the proximity space. Specifically, the
pan-tilt-verge control reference is determined by the rel-
ative position (in pixel disparity units) of the centroid of
the proximity space with respect to the fixation point(see
Figure 2 ¢). This is analogous to eye-head coordination
in animals in that the electronics provide for rapid but
small scale adjustments similar to the eyes, and the me-
chanics provide for slower but larger scale adjustments
similar to the way an animal’s head follows its eyes. This
control scheme, running on our real-time hardware, pro-
duces a smooth and robust flow of attention.

2.3.4 Re-acquiring the agent

The system described above, while robust, does period-
ically lose track of the agent. This condition is detected
by monitoring the ratio of texture-hits to texture-misses
within the proximity space. When this value falls below
a certain threshold (about 10%) it indicates that the



Figure 3: Tracing objects to estimate shape and size
using the proximity-space method.

system has probably lost track of the surface(s) it was
tracking. If the system does lose track, it can re-acquire
in a manner identical to initial acquisition except that
1t may use the additional information of the body’s last
known velocity to bias the search.

2.4 Other complex gaze behaviors

Besides tracking, proximity-space-based behaviors
can be used to control gaze for exploration, obstacle
avoidance, etc. As discussed in subsection 2.3.2, the
texture attractor behavior was used to make tracking
more robust because it was repulsed by object bound-
aries. Use of this behavior without motion tracking is
still capable of tracking, albeit unstably. An interesting
characteristic of this crippled tracking mode is that the
proximity space bounces around inside the image of the
body, freely traveling until it hits an occluding contour
and ricochets off to remain “in bounds”. We have used
this behavior in conjunction with a behavior that seeks
boundaries to arrive at a resultant gaze control behavior
which tends to reach equilibrium at occluding contours.
The addition of an edge following behavior produced a
resultant object-tracing behavior (see Figure 3). Such
control schemes can readily be applied to estimate the
shape and size of an object. A variation on the texture
attractor, called the texture repulsor has been used for
obstacle avoidance.

3 Integration onto a mobile robot

We have mounted our stereo vision system described
in the previous section on a mobile robot. The robot 1s
a Cybermotion K2A base with a ring of 24 sonar sensors
(see Figure 1). All processing done by the stereo sys-
tem is performed on-board the robot. The integration
of the stereo vision system and our mobile robot took
place within the context of an intelligent architecture we
are developing for control of robots. The architecture is
composed of a set of skills and methods for turning on
and turning off subsets of the skill set to achieve different
tasks.

Skills are defined as a closed loop of software that
seeks to achieve or maintain a state (either internal or
external). In our implementation, skills are small chunks
of C code that take inputs, either from the environment
or from other skills, and generate outputs, which are
passed to the robot or to other skills. The robot’s pur-
suing behavior is created by using the following skill set:

1. vision: This skill communicates with the vision sys-
tem as it acquires and tracks the agent. It outputs
the (x,y,2) position of the object relative to the robot
as well as the status of the tracking process (i.e.,
tracking or lost track).

2. TRACK-AGENT: Takes input from the vision skill
and generates goal positions and velocities for the
robot based on the location, distance and speed of
the agent being pursued.

3. MAKE-MAP: Takes sonar information and generates
as output a histogram map of obstacle positions us-
ing an algorithm described in [10].

4. FIND-FREE-DIRECTION: Takes the histogram map
and the desired goal and finds a free direction of
travel using the VFH obstacle avoidance algorithm

[11].

5. DRIVE-AND-STEER: Takes the free direction and the
desired velocity of the robot and generates drive and
steer velocities based on obstacle density and the
acceleration limits of the robot.

6. ROBOT: Gathers the robot’s sensory and encoder
data and passes it to other skills. Takes drive and
steer commands and passes them to the robot.

When all of these skills are activated, information
flows through the skill network as shown in Figure 4.
The outputs of one skill become the inputs to the next
skill. Some of the skills work with information obtained
directly from the robot or stereo system and other skills
only work on information that has been generated by



Figure 4: The network of skills that are used to perform
the pursue agent task.

another skill. A system called the skill manager [12]
maintains the flow of information through the network
and automatically reconfigures the network when skills
are activated or deactivated. The activation or deactiva-
tion of skills is done using the Reactive Action Packages

(RAP) system [13].
3.1 Executing the pursuing task

In order to execute the pursuing task, we wrote sev-
eral RAPs that activate the appropriate skills depend-
ing upon the situation. First, the vision skill is acti-
vated and told to search a particular volume of space
for a agent (the search process is described in subsec-
tion 2.3.1). When the visioN skill acquires the agent
it begins reporting the agent’s (z,y, z) position with re-
spect to the robot and it also triggers the activation of
the TRACK-AGENT skill. At the same time, the ROBOT,
MAP-MAKING, FIND-FREE-DIRECTION, and DRIVE-AND-
STEER skills are activated. The TRACK-AGENT skill takes
the position of the agent relative to the robot and con-
verts 1t to world coordinates, making it a goal for the
robot to attain. The TRACK-AGENT skill also calculates
the distance and speed of the object and chooses a de-
sired speed for the robot. This desired speed may be
zero if the robot is close enough to the agent or even
negative if the agent is too close (i.e., the robot will
be instructed to back up). The FIND-FREE-DIRECTION
skill takes the goal and speed and, using the sonar map

of obstacles, determines a free direction of travel. The
DRIVE-AND-STEER skill then takes the free direction and
desired speed and computes the robot’s drive and steer
velocities. This cycle continues, with the vision skill
producing a new agent location four times a second. If
the visioN skill loses the agent the TRACK-AGENT skill
sets the robot speed to zero and the visioN skill begins
an automatic search for the agent (described in subsec-
tion 2.3.1). When the agent is re-acquired, the cycle
continues.

3.2 Results

We tested our system by having our mobile robot pur-
sue us around our laboratory. Our lab is approximately
20 meters square with uniform fluorescent lighting and
normal office furniture. Once the robot begins pursuing
an agent, 1t continues until it loses the agent perma-
nently. Even if the agent stops moving, the robot main-
tains a fixed distance from the agent (two meters in our
case) and waits for the agent to start moving again. If
the vision system loses the agent, the robot stops and the
vision system attempts to re-acquire the agent. Often it
finds the agent before the robot even comes to a complete
stop and pursuit continues, almost uninterrupted. The
cases where the robot loses the object entirely are often
the result of three distinct circumstances: 1) The object
becomes fully occluded; 2) The agent (or the ego-motion
of the mobile base as it turns to avoid an obstacle) ex-
ceeds the tracking speed of the stereo head (about 60
degrees per second); and 3) The object moves too close
(within one meter) or too far away (further than 10 me-
ters) from the camera. In these cases, the robot has
to start its initial search again. The agent can aid this
search by moving in front of the robot.

This system was tested over a period of a month using
a variety of people as agents and several times using an-
other robot as an agent. The maximum speed at which
the robot could travel was set at 0.4 meters/second. We
had the robot pursue people for up to fifteen minutes,
with the limiting factor usually being boredom on the
part of the person being tracked. The person being pur-
sued had to be careful not to become fully occluded, not
to move laterally too quickly and not to get too far away
from the robot, especially when the robot slowly maneu-
vered through obstacles that didn’t slow a person down.
To see examples of our robot pursuing agents see our
video in the video proceedings of this conference.

4 Conclusions and future work

We have demonstrated a combined stereo vision and
mobility system that operates interactively with humans



in real-time in a real-world environment without arti-
In particular, we have introduced a novel,
behavior-based approach to active vision and applied it
to the task of tracking an agent. We have also shown
that the intelligent control architecture we are devel-
oping can incorporate high-bandwidth perception with
other sensing modalities, while working towards specific
robot goals. In addition to these technical contributions,
we discovered that the coupling of these systems pro-
duced a robot with an attentiveness that was described
by those being pursued as surprisingly animate. We
think this noticeable attentiveness is the result of sev-
eral factors: 1) The stereo system had a behavior that
caused its attention to be drawn to the head; 2) Even
the slightest movements of the agent caused reciprocal
movements of the stereo head; and 3) The robot’s per-
sistence in pursuing even as the agent stopped to talk or
attempted to lose it.

The fact that our system does not use models to ac-
quire or track objects means that it is capable of track-
ing any textured object. However, by not using models,
certain conditions such as full occlusions may cause the
system not to re-acquire the same object that it was
originally tracking.

It is our intention to expand the collection of percep-
tual behaviors and combine them in a network to im-
prove human/robot interaction. We envision a system
that employs several proximity spaces each with its own
set of behaviors revealing more globally significant data
about the salient features of an object(s). For exam-
ple: if three proximity spaces were free to migrate across
a body, one “Northbound” one “North-eastbound” and
one “North-westbound” their relative steady-state po-
sitions could provide key information about a human’s
pose. By this scheme the vision system could recog-
nize a deliberate pointing stance and follow the implied
pointing vector to the object of interest, possibly a new
“master” or an object to be retrieved. Truly effective hu-
man/robot interaction will require many skills, of which
we have only implemented pursuing at this time.

ficial cues.

References

[1] M. R. Blackburn and H. G. Nguyen, “Autonomous
vision control of a mobile robot,” in Proceedings of
the 1994 ARPA Image Understanding Workshop,
1994.

[2] D. H. Ballard, “Animate vision,” Artificial Intelli-
gence, vol. 49, no. 1, , 1991.

[3] D.J. Coombs and C. M. Brown, “Cooperative gaze
holding in binocular vision,” in Proceedings of the

(8]

[9]

[10]

[11]

[12]

[13]

Fifth IEEE International Symposium on Intelligent
Control, 1991.

H. Nishihara, “Practical real-time imaging stereo
matcher,” Optical Engineering, vol. 23, no. b, , 1984.

D. Marr and T. Poggio, “A computational theory
of human stereo vision,” in Proceedings of the Royal

Society of London, 1979.

E. Huber, “Confidence assessment for stereo depth
mapping using a PRISM-3,” in Proceedings of the
SPIE Conference on Sensor Fusion and Aerospace
Applications, 1994.

H. Inoue, T. Tachikawa, and M. Inaba, “Robot vi-
sion system with a correlation chip for real-time
tracking, optical flow and depth map generation,”
in Proceedings of the 1992 IEEE International Con-
ference on Robotics and Automation, 1992.

T. J. Olson, “Stereopsis for verging systems,” in
Proceedings IEEFE Computer Vision and Pattern
Recognition Conference, 1993.

R. A. Brooks, “A Robust Layered Control System
for a Mobile Robot,” TEEE Journal of Robotics and
Automation, vol. 2, no. 1, , 1986.

J. Borenstein and Y. Koren, “Histogramic in-
motion mapping for mobile robot obstacle avoid-
ance,” IEFFE Journal of Robotics and Automation,
vol. 7, no. 4, , 1991.

J. Borenstein and Y. Koren, “The Vector Field
Histogram for fast obstacle-avoidance for mobile
robots,” IEEE Journal of Robotics and Automation,
vol. 7, no. 3, , 1991.

S. T. Yu, M. G. Slack, and D. P. Miller, “A stream-
lined software environment for situated skills,” in
Proceedings of the AIAA/NASA Conference on In-
telligent Robots wn Field, Factory, Service, and

Space (CIRFFSS ’94), 1994.

R. J. Firby, “Task networks for controlling continu-
ous processes,” in Proceedings of the Second Inter-
national Conference on Al Planning Systems, 1994.



