
An Intelligent Agent Architecture In Which to Pursue Robot Learning

R. Peter Bonasso and David Kortenkamp

The MITRE Corporation
1120 NASA Road 1
Houston , TX 77058

korten@aio.jsc.nasa.gov

Abstract
This paper describes a multi-layered, intelligent agent
software architecture, developed for mobile and
undersea robot applications in the defense sector, and
to provide tele-autonomy to space-based manipulator
robots. The architecture has a deliberative layer
which uses a state-based planner, a middle layer for
sequencing partially ordered plans using robot skills,
and a lower layer repertoire of continuous robot skills.
The system has been shown to provide a higher level
of human supervision that preserves safety while
allowing for task level direction, reaction to out-of-
norm parameters, and human intervention at all levels
of control. For this workshop, we hypothesize that the
architecture is a useful framework in which to explore
learning techniques. In particular, we outline
techniques appropriate to learning within a given
layer, techniques for migrating competences from
higher to lower layers, and overall system adaptation
from its interaction with the environment. Examples
are reinforcement learning for tuning individual skills,
case-based techniques to improve the re-planning
capability of the deliberative layer, and chunking or
explanation-based learning to migrate new strategies
created by the planner into standard procedures for the
sequencing level.

Background and Motivation
Since the late eighties we have investigated ways to
combine deliberation and reactivity in robot control
architectures [Sanborn et al 1989, Bonasso 91, & Bonasso
et al 92], in order to program robots to carry out tasks
robustly in field environments. Field environments are
those in which events for which the robot has a response
can occur unpredictably, and wherein the locations of
objects and other agents is usually not known with
certainty until the robot is carrying out the required task.
A robot control software architecture, developed at MITRE
is an outgrowth of several lines of situated reasoning
research in robot intelligence [Firby 89, Gat 91, Connell
91, Slack 92, Yu et al 94, Elsaesser & Slack 94], and has
proven useful for enabling mobile robots to accomplish
tasks in field environments. This architecture separates the
general robot intelligence problem into three interacting
pieces (see Figure 1, below, Figure 2 is discussed in the
section on learning):

o A set of robot specific reactive skills. For example,
grasping, object tracking, and local navigation. These are
tightly bound to the specific hardware of the robot and
must interact with the world in real-time.

o A sequencing capability which can differentially
activate the reactive skills in order to direct changes in the
state of the world and accomplish specific tasks. For
example, exiting a room might be orchestrated through the
use of reactive skills for door tracking, local navigation,
grasping, and pulling.

o A deliberative planning capability to reason in depth
about goals, resources and timing constraints.

These capabilities allow a robot, for example, to accept
guidance from a human supervisor, plan a series of
activities at various locations, move among the locations
carrying out the activities, and simultaneously avoid danger
and maintain required resource levels.

We have been successful in applying this architecture to
mobile land [Bonasso et al 92] and undersea robots
[Bonasso & Barrett 93] in the defense sector, and to
mobile, two-armed manipulator systems in support of
NASA. We believe the architecture is developed to the
point where it can be used as a framework for integrating
the work of other AI disciplines such as spoken language
techniques and machine learning. This paper discusses the
architecture from the standpoint of how various learning
techniques might be accommodated.

The next section details the architecture in each of its three
layers. The subsequent section discusses ideas for applying
machine learning techniques to the architecture.

Architecture Discussion via Space Examples
We have recently been using the architecture as a
framework for controlling a two-armed manipulator robot
maintaining a space station from the ground. The idea is
that an intelligent ground control station can enable a
ground crew to supervise the routine maintenance activities
of the robot, and thus allow the on-orbit personnel to
concentrate on user missions. We use examples from this
domain to illustrate the architecture.

The Planner

The planning system is envisioned to be a state-based, non-
linear hierarchical planner a la SIPE. The planner we use,
known as AP [Elsaesser & MacMillan 91], is a multi-agent
planner which can reason about metric time for scheduling,
monitor the execution of its plans, and replan accordingly.
A typical AP plan operator for carrying out routine
maintenance at various sites is:

(Operator conduct-inspections-or-repairs

 :purpose
(sites-inspected-or-repaired ?planner ?list-of-sites)

 :agents :none
 :arguments (

 (?broken-sites
(list (get-sites-with-broken-items)))

 (?number-of-broken-sites
(length (quote ?broken-sites)))

 (expand ?number-of-broken-sites
(?broken-site)

 (?broken-site
(list

 (nth *ap-subst-count*
(quote ?broken-sites)))))

 (?number-of-sites
(length (quote ?list-of-sites)))

 (expand ?number-of-sites (?site)
 (?site

(list
 (nth *ap-subst-count*

(quote ?list-of-sites)))))
)

 :preconditions ((at ?planner cl-user::dock))

 :plot

;; The plot is to wake-up, get any tools and replacements,
 ;; inspect or repair each site, then return

 (sequential
 (ready-status ?planner ready)
 (expand ?number-of-broken-sites

(?broken-site)
 (ready-for-site-repair ?planner

?broken-site))
 (attached-to ?planner none) ;;detached
 (expand ?number-of-sites (?site)
 (inspected-or-repaired ?planner ?site))
 (status ?planner docked)
)

 :effects ((sites-inspected-or-repaired ?planner
?list-of-sites))

)

This operator matches a goal to inspect or repair a list of
sites. The arguments invoke functions which query either
the planner's world model (a frame system of CLOS
objects) or the dynamic memory of the sequencing tier of
the architecture. The planner expands this operator by
searching for other operators whose purpose unifies with
the various propositions in the plot. For example a number
of operators have the (inspected-or-repaired ?planner ?site)
purpose depending on the preconditions and arguments,
e.g.,

(Operator repair-site-with-broken-item-needing-
replacement-only

 :purpose (inspected-or-repaired ?planner ?site)
 :agents :none
 :arguments (

 (?site-item
 (first (cl-user::get-all-items-at-except

?site 'cl-user::pdgf)))
 (truth (cl-user::memory-ask
 `(cl-user::class ?site-item

fire-extinguisher cl-user::true)))
 (?replacement

(get-broken-item-replacement
?site-item))

)
 :preconditions ((status ?site-item off-nominal))

:plot

 (sequential
 (item-in ?replacement oru-pouch)
 (at ?planner ?site)
 (attached-to ?planner ?site)
 (repaired ?planner ?site-item)
 (attached-to ?planner none))

 :effects ((inspected-or-repaired ?planner ?site))
)

which describes how to repair fire-extinguishers by using a
suitable replacement.

The repairs themselves have several standard procedures
which the planner need not keep track of in detail. But the
planner needs knowledge of these to determine the
resources needed and the nominal times required. For
example, the hard-repair-at-site operator (next page) shows
the need for a manipulator to stabilize the robot while
repairing heavy items, and to use a wide-field of view
vision agent.

Each primitive operator (e.g. fix-item-with-arm on the next
page) has a user-supplied function that estimates the time
to complete the operation which is used for propagating
earliest and latest start and end times throughout the
resulting plan tree.

(Operator hard-repair-at-site
 :purpose (repaired ?planner ?site-item)
 :arguments (

(?site (get-site-from-memory
?site-item))

 (?weight
(get-size-from-memory ?site-item))

 (truth (>= ?weight 20)))
 :constraints ((and
 (member ?arm-1 '(left-arm right-arm))
 (member ?arm-2 '(left-arm right-arm)))
 (check-arm-for-tool-and-strength

?site-item ?weight ?arm-1)
 (eq

(gsv ?vision-agent 'field-of-view)
'wide))

 :preconditions ((attached-to ?planner ?site))

 :plot (sequential
 (grappled ?arm-2 ?site)
 (simultaneous

(examined ?vision-agent ?site-item)
 (fixed ?arm-1 ?site-item))

 :effects (
(repaired ?planner ?site-item)

 (arms-status ?planner unfolded)
)

)

(Operator fix-item-with-arm
 :purpose (fixed ?arm ?site-item)
 :arguments (

(?site
(get-site-from-memory ?site-item)))

 :preconditions ((attached-to ?planner ?site))
 :effects ((fixed ?arm ?site-item)
 (arms-status ?planner unfolded))
 :task-time duration-of-fix-item-with-arm
)

The Sequencer

We are using a new version of Firby's Reactive Action
Packages (RAPs) [Firby 93] as the instance of our
sequencing system to encode routine behavior as sequences
of situated skills. The RAP interpreter uses a library of
RAPs to decompose sequences of behaviors to accomplish
a task. The system can quickly transform a planner-
directed task (i.e., primitive AP operator) into a context
specific sequence of skills (which may be run concurrently)
by caching solutions to common tasks. The richness of the
RAP system can be seen from the following examples.

A basic repair RAP used in the routine maintenance
activity invoked by the fix-item-with-arm operator of the
planner (the sequencer will use the suggested arm as a
recommendation) is

(define-rap (repair-antenna ?item)
 (succeed (and (location ?item external)
 (on-off ?item on)
 (working-status ?item operational)))
 (preconditions (class ?item antenna true))
 (method m-1
 (context (and (arm-place ?arm ?someplace)
 (not (= ?arm foot))
 (not (arm-holding ?arm ?any))))
 (task-net
 (t0 (arm-pickup ?arm ?item)
 ((arm-holding ?arm ?item) for t1))
 (t1 (arm-toggle-p ?arm ?item) (for t2))
 (t2 (eye-examine-p ?arm ?item)
 ((on-off ?item on) for t3))
 (t3 (wait-p 15) (for t4))
 (t4 (arm-putdown-at ?arm ?item external) (for t5))
 (t5 (eye-examine-p external ?item) (for t6))
 (t6 (put-away-tool ?arm)))))

The robot must turn the antenna (the toggle operation is
generic for turn or turn on/off) until it reaches its desired
orientation (usually takes 15 seconds). This RAP will
succeed when the antenna is on and operational (which will
be its state when the antenna is properly oriented). The
RAP only works with items of the antenna class. It consists
of a single method which is invoked when there is a free
arm to use, and involves seven sequential steps (each of
which has its own RAP definition). The RAP interpreter
insures the proper order and the critical preconditions of
subsequent steps by use of the "for" clause after each
subtask invocation. The RAP interpreter will instantiate the
m-1 method for each arm that is available. If the method
fails for that arm, it will try the other. Further, it will try
each method twice (a user parameter), before giving up.

The memory query in the succeed clause will usually be
made true by the firing of memory rules associated with the
RAPs in the sub tasks. Memory rules are associated with
each RAP as shown in the mort-turnto-angle example (next
page) from one of our mobile robots named Mortimer.

The RAP first enables the robot's primitive turning skill,
providing the desired angle, turning speed and accuracy
factor. Then it enables the primitive event mort_at_angle
which waits until the robot has turned to the desired angle
and returns the actual angle. Concurrently, a primitive
RAP, which is a Lisp function, informs the user of what is
happening via a speech channel. The turning action and the
speech act must occur before task t4 where the turning
action is disabled; the second speech act can occur
concurrently with t4. The lack of a succeed clause allows

the RAP to execute once and then return as if (succeed t)
were the case.

(define-rap (mort-turnto-angle ?angle ?velocity
?sensitivity)

 (method m1
 (task-net
 (t1 (mort_turnto ?angle ?velocity ?accuracy)
 (wait-for

(mort_at_angle ?angle ?accuracy
?realangle)

 :succeed (at-angle ?realangle))
 (for t3)(concurrent-with t2)(for t4))
 (t2 (host-dospeek "mort turning" 3 t)(for t3))
 (t3 (host-dospeek "mort at angle" 3 t)

(concurrent-with t4))
 (t4 (mort_turnto_disable)))))

(define-memory-rule (mort-turnto-angle ?angle ?velocity
?sensitivity) :event

 (match-result
 ((at-angle ?realangle)
 (rule ((= ?realangle 90.0)
 (mem-add (mort-direction EAST)))))))

The memory rule fires when an event executing in the RAP
returns a :succeed clause matching the result expected for
that rule. Arbitrary Lisp functions can be invoked, but the
special rule form allows the updating of the RAPs memory
in a principled fashion. The following RAP used with a
manipulator controlled from a ground station (i.e., with
communications delays) shows the use of the memory rule
to allow the RAP to complete:

(define-rap (arm-move ?arm ?place)
 (succeed (arm-place ?arm ?place))
 (preconditions (current-mode joint-immediate))
 (method pdgf-approach
 (context (= ?place pdgf-approach))
 (task-net
 (t1 (move-current-arm 1)
 (wait-for (arm-moving ?speed) :succeed

(arm-moving ?speed)) (for t2))
 (t2 (no-op)
 (wait-for (arm-not-moving ?place) :succeed

(arm-not-moving ?place)) (for t3))
 (t3 (disable-move-current-arm ?place))))
 (method truss-approach
 (context (= ?place truss-approach))
 (task-net
 (t1 (move-current-arm 2)
 (wait-for (arm-moving ?speed) :succeed

(arm-moving ?speed)) (for t2))
 (t2 (nop)
 (wait-for (arm-not-moving ?place) :succeed

(arm-not-moving ?place))
 (for t3))
 (t3 (disable-move-current-arm ?place)))))

(define-memory-rule (arm-move ?arm ?place) :event
 (match-result
 ((arm-not-moving ?place)
 (rule (t
 (mem-del (arm-place ?arm))
 (mem-add (arm-place ?arm ?place)))))))

Here, an event is enabled to determine that the arm has
started moving (the primitives have time-outs which can
trigger other memory rules if needed). Afterwards, a NO-
OP RAP (a null Lisp function) is enabled in order to enable
an event which waits for the arm to cease moving, at which
time the memory rule will fire asserting the place of the
arm, which will allow the RAP succeed clause to become
true.

The Skill Level

The sequencer's job is to coordinate the dynamic activation
and deactivation of situated skills in order to configure the
reactive layer for the task at hand. There are three types of
skills: primitive actions (and their disabling counterparts),
primitive events and primitive queries (queries were
designed to appear as normal memory requests, when in
fact they query the robot device itself). An example of each
is shown below:

(define-primitive-action (move-current-arm ?place)
 (enable (:move_current_arm (:place . ?place))))

(define-primitive-action (disable-move-current-arm ?place)
 (disable :move_current_arm ?place))

(define-primitive-event
(arm-init-mode ?mode1 ?mode2 ?which-mode)

 (event-definition
(:arm_init_mode

(:qstate1 . ?mode1)(:qstate2 . ?mode2)))
 (event-values :bound :bound :unbound))

(define-primitive-query (selected-mode ?mode)
 (query-definition (:selected_mode))
 (query-values :unbound))

Each skill is written in the language of the robot computer
(both C and Rex languages have been used) and has a set of
inputs, outputs, states and parameters. The inputs of
actions, events and queries can only come from other
actions, and the outputs of actions can only go to other
events or actions. Event and query outputs consist of both a
true/false output as well as any values to be returned. Thus
to find out the status of the result of an action, an event or
query skill must be constructed. Parameters are settings
passed by the RAP upon invocation, such as accuracy of a
turning angle.

The move-current-arm action above has a single parameter,
the arm to be moved. The arm-init-mode event checks for
the occurrence of one of two initialization modes and
returns the mode detected. The select-mode query returns
the current selected mode of the robot device.

In our experience with mobile and manipulator robots,
approximately 20 - 25 skills make up a sufficient skill base
from which to design RAPS to exercise the total robot
capability. These include one or two D-skills -- skills to
gather status information directly from the robot hardware,
and the rest C-skills, or those which define the low-level
competence of the robot.

Learning
Figure 2 depicts our instantiation of the complete
architecture. The planner invokes partially ordered plans
which are then specifically ordered and reordered by the
sequencer's RAP interpreter, based on the actual
environment. The interpreter in effect specifies for any
phase of a task the skill set which when invoked will bring
about the completion of that phase. The interpreter also
maintains a dynamic memory of key states of the robot and
the world used to invoke various RAPs. The planner, when
notified by the interpreter of the completion of a planned
activity, queries the same memory to determine the
progress of the plan and invokes replanning when
necessary.

We hypothesize three different ways of applying learning
to our architecture. First, learning can be applied within
each layer of the architecture to increase that layer's
performance and thus the performance of the architecture
as a whole. Second, learning can take place across layers,
that is, activities that once required planning can, over time,
be moved to the sequencer and finally to a skill. Third,
learning can be used to alter the response of the
architecture to the environment. For example, the
sequencer could learn the correct timings for each skill in a
reactive package. Each of these three areas are explored in
the following subsections.

Learning within layers

Learning within layers can be addressed immediately using
known techniques. There are several examples of learning
being used to increase a planner's performance, for
example, Soar [Laird et al 87] and [Knoblock et al 91]. We
can envision a case-based learning system for our planner,
especially in repairs to the plan; repairs to a plan can be
cached using the current robot context available from the
RAP memory.

The feedback that the RAPs system exploits from the low-
level skills can be the basis of learning new methods in the
sequencing layer, a process of learning by observation
(e.g., [DeJong 86]. There is a simple but illustrative
example from our manipulator work which was "learned"

by the programmer. A RAP for selecting which arm to use
is somewhat complex since if the selected arm is not the
current arm, a set of memory queries needs to be invoked
about the new arm. Additionally, the current arm needs to
be placed in a standby mode prior to selecting the new arm.
Once in the middle of the day, when an arm was brought
on line after being down for repairs, the select-an-arm RAP
timed out while waiting for the standby setting to be
established for the new arm. This was because when the
robot system first starts up (or one of the arms has gone
down and must be reinitialized), there is a system state in
which no arm has been selected, and further, no commands
including mode settings can be accepted until an arm is
selected. To solve the problem, the programmer added an
additional method to check for that unique state and forego
setting the current arm on standby.

There are also many examples of reinforcement learning
being used to increase the performance of reactive robot
skills, for example [Brooks 89]. In particular we are
interested in having our skills learn various parameters that
control their behavior. For example, our obstacle
avoidance skill has several thresholds for determining
whether a certain direction is open or closed. Adjusting
these thresholds for each new environment is time
consuming. As each layer of the architecture incorporates
its own learning algorithms the performance of the
architecture as a whole should improve.

Learning across layers

While each layer can incorporate its own learning
algorithms fairly easily, interesting issues arise when we
attempt to do learning within the architecture as a whole.
In this case, we are interested in "migrating" competencies
from the deliberative layer down to the skill layer in order
to increase performance. It is easy to come up with
examples of such learning in people, for example, piano
playing takes incredible deliberative attention at first, but
becomes automatic with practice. Such learning usually
follows a power law where increased repetition leads to
increased performance. Several systems, such as Soar and
ACT* [Anderson 83] exhibit this kind of learning, but they
are single-layer architectures. How can we achieve similar
results within a multi-layer system?

There are two possibilities. First, when a plan is
successful, the planner can create a new RAP that
embodies the actions and variable bindings of that plan and
add this RAP to the RAP memory. Now the planner can
use that new RAP as an atomic action within a larger plan.
This is the chunking approach taken by systems such as
Soar, and is akin to explanation based approaches which
use reduction on formal representations. The second
possibility for learning across layers arises when the
sequencer fails to achieve its goal. In this case, the planner
is re-invoked and a new plan is developed. At this point, it
would be possible for the planner to change the context,

preconditions or succeed clauses of the RAP that failed.
The planner could also add a new context and method to an
existing RAP in order to prevent failure during future
executions.

The previous paragraph discusses migrating competencies
from planning to sequencing. In addition, competencies
can migrate between the sequencing layer and the skills.
At this point we have thought very little about how to take
the results of sequencing and chunk them into skills. An
intermediary approach might be to have skills learn to
automatically sequence themselves, based on previous
experiences. For example, if the "goto-person" skill is
always activated immediately after the "find-person" skill,
then the skill layer could begin to automatically activate the
former as soon as it is done with the latter, without waiting
for specific directions from the sequencer. In this case, the
sequencer's roll is to start a skill chain and then interrupt
that chain if the robot is supposed to do something out of
the ordinary.

Learning about the environment

The sequencer layer in our architecture has the ability to
control how often a skill is fired. For example, an obstacle
avoidance skill is typically run at the maximum rate, while
a skill to check the vision system for results is typically run
only every second, since the vision system is slow.
Currently, these timings are hard-coded by the
programmer. An interesting area of research would be to
develop an algorithm that learned some of these timings
based on the robot's experience with the pace of the world
around it. For example, it may learn that the skill for
checking if a person is still behind it only needs to run
every couple of seconds, based on its experiences with
losing people. As the robot accumulates world knowledge
it can better schedule its resources.

Conclusion
While we have not yet started to explicitly address learning
in our architecture, we believe that our framework allows
for easily incorporating learning at many levels. Here are
some features of our architecture that make it suitable for
learning research:

1) A layered architecture allows for many different
learning mechanisms. Reinforcement learning may be
appropriate at the skill level, but not at the deliberative
level. Learning by discovery may be appropriate for the
sequencer, but not for the planner, while case-based
learning may be appropriate for the planner, but not for the
sequencer. Thus, each level can make use of the learning
algorithms most appropriate to it.

2) The sequencer (RAPs) uses a RAP library that is
independent of the main execution cycle. Thus, new RAPs
can be built and placed in the RAP library by the planner
and they will automatically be invoked by RAPs in the

appropriate context. This is possible in part because of the
similarities in representations between RAPs and a state-
based planner.

3) The sequencer has control of the firing rates of the
skills. These rates are currently hard-coded, but could
easily be adjusted autonomously.

4) The skill layer allows information to flow between
skills without passing through another layer. Thus, skills
can be "chained" together to produce larger skill sequences.

As we learn more about our architecture through
implementation on more robots, we will certainly identify
more areas where learning will help to increase robot
performance. In each of these cases we will need to
identify appropriate metrics to allow for comparisons
between the architecture without learning and the
architecture with learning. In this way, we can determine
the most appropriate use of learning algorithms within a
robot architecture.

References
[Anderson 83] John Anderson. The Architecture of
Cognition . Harvard University Press, Cambridge, MA,
1983.

[Bonasso 91] R. Peter Bonasso. Integrating Reaction Plans
and Layered Competences Through Synchronous Control.
In Proceedings of the 12th International Joint Conference
on Artificial Intelligence. Sydney, Australia. Morgan
Kaufman.

[Bonasso et al 92] R. Peter Bonasso, H.J. Antonisse, M.G.
Slack. A Reactive Robot System for Find and Fetch Tasks
In An Outdoor Environment. In Proceedings of the Tenth
National Conference on Artificial Intelligence. San Jose,
CA. July 1992.

[Bonasso & Barrett 93] R. Peter Bonasso, R.P. & J. Barratt,
J. A Reactive Robot System for Find and Visit Tasks in a
Dynamic Ocean Environment. In Proceedings of the 8th
International Symposium on Unmanned Untethered
Submersible Technology, IEEE Oceanographic Society,
Sep 1993.

[Brooks 89] Rodney A. Brooks. A Robot that Walks;
Emergent Behaviors from a Carefully Evolved Network,
Proceedings IEEE Conference on Robotics and
Automation, 1989.

[Connell 91] J. H. Connell. A hybrid architecture applied to
robot navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, April 1992.

[DeJong 86] Gerald Dejong. An Approach to Learning
from Observation. In Machine Learning, An Artificial
Intelligence Approach,Vol II, R.S. Michalsky, J.G.

Carbonell, and T.M. Mitchell, eds. Morgan Kaufmann,
1986.

[Elsaesser & MacMillan 91] C. Elsaesser . Representation
and Algorithms for Multiagent Adversarial Planning,
MTR-91W000207, The MITRE Corporation, Dec 1991.

[Elsaesser & Slack 94] C. Elsaesser & M.G. Slack.
Deliberative Planning in a Robot Architecture. In
Proceedings of the AAIA/NASA Conference on Intelligent
Robots in Field, Factory, Service and Space, March 1994.

[Firby 89] James R. Firby. Adaptive Execution in Complex
Dynamic Worlds. PHD Diss. YALEU/CSD/RR #672, Yale
University. 1989.

[Firby 93] James R. Firby. Interfacing the RAP System to
Real-time Control (forthcoming), University of Chicago.

[Gat 91] Erann Gat. Reliable Goal-Directed Reactive
Control of Autonomous Mobile Robots. PhD thesis,
Virginia Polytechnic Institute Department of Computer
Science, April 1991.

[Knoblock et al 91] Craig Knoblock, Steven Minton and
Oren Etzioni. Integration of Abstraction and Explanation-
Based Learning in PRODIGY, AAAI-91, 1991.

[Laird et al 87] John Laird , Allen Newell and Paul
Rosenbloom. Soar: An Architecture for General
Intelligence. Artificial Intelligence 33(1), 1987.

[Sanborn et al 1989] Jim Sanborn, B. Bloom, and D.
McGrath. A Situated Reasoning Architecture for Space-
based Repair and Replace Tasks, In !989 Goddard
Conference on Space Applications of ARtificial
Intelligence, Greenbelt, MD. NASA Pub # 3033.

[Schoppers 89] 6. Marcel J. Schoppers. In Defense of
Reaction Plans As Caches. AI Magazine, 10(4): 51-60,
1989

[Slack 90] Marc G. Slack. Situationally Driven Local
Navigation for Mobile Robots, JPL Pub. 90-17, 1990.
NASA.

[Slack 92] M. G. Slack. Sequencing formally defined
reactions for robotic activity: Integrating {RAPS} and
{GAPPS}. In Proceedings of the SPIE Conference on
Sensor Fusion, November 1992.

[Yu et al 94] S. Yu, M. G. Slack, and D. P. Miller. A
streamlined software environment for situated skills. In
Proceedings of the AAIA/NASA Conference on Intelligent
Robots in Field, Factory, Service and Space, March 1994.

