
Electronic Notes in Theoretical Computer Science 55 No. 2 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume55.html 19 pages

Collecting and Analyzing Data from
Distributed Control Programs

David Kortenkamp and Tod Milam

Metrica Inc./TRACLabs
1012 Hercules

Houston TX USA 77058

Reid Simmons and Joaquin Lopez Fernandez

School of Computer Science
Carnegie Mellon University
Pittsburgh PA USA 15213

Abstract

This paper describes a set of tools that allows a developer to instrument a C/C++
program to log data at run-time and then analyze that data to verify correct be-
havior. The logging tools provide the developer with a means to log a variety of
di�erent data to a variety of di�erent outputs. They also allow for synchronized
logging of data from distributed programs. One logging output option is an SQL
database. We have developed a set of analysis tools that retrieve data from the
database to answer common developer questions. The analysis tools use an interval
temporal logic to frame database queries. The data logging tools are fully imple-
mented and performance results are given in this paper. The data analysis tools
are currently being tested on data from real NASA applications.

1 Introduction

Debugging and verifying distributed control programs is notoriously diÆcult,
yet such control programs are becoming more and more common in compli-
cated applications. Examples include the Remote Agent control architecture
[9], the 3T control architecture [3] and the TCA control architecture [13]. In
each of these instances, concurrent programs run (often on separate machines)
to generate control commands for single or multiple devices.

1 Email: korten@traclabs.com
2 Email: reids+@cs.cmu.edu

c
2001 Published by Elsevier Science B. V.

When an error occurs, it can often be very diÆcult to isolate the prob-
lem to one speci�c control module, due to timing constraints, interprocess
communications, and synchronization. The traditional dynamic method for
debugging sequential software has no timing constraints. For these systems,
cyclic debugging (running the program until an error shows up, examining the
program state, inserting assertions and re-executing the program to obtain
additional information) is commonly used [15]. However, there are several
reasons why this approach cannot be applied to distributed control programs:

� Often the distributed processes cannot be paused for examination since they
are controlling physical hardware.

� There is no central, global state or even global clock to reference state values,
which makes it diÆcult to reason about the \state" of the system at a given
time.

� Due to latencies and timing issues, distributed control programs are inher-
ently non-deterministic and non-repeatable.

In this paper we present a set of tools that allow programmers to instru-
ment their control code and to time-stamp and collect real-time data into a
common database. Then, a companion set of tools can be used to analyze the
data to �nd the occurrence, or absence, of temporal patterns in the output.
First, we describe the data collection tools, then we describe the related data
analysis tools. An integrated example is used throughout. The example looks
at verifying the distributed control program for a NASA life support system.

1.1 Related work

Reid Simmons and his group at Carnegie Mellon University have developed
several data display tools for distributed control programs, including comview

for viewing message traÆc, tview for viewing the hierarchical decomposition of
tasks, and planview for displaying and analyzing plan execution information.
These tools have already been integrated with both the TCA architecture [12]
and the NASA Ames Remote Agent architecture. An overview of this work
can be found in [14].

Work on visualizing real-time programs has resulted in a product from
Real Time Innovations Inc. called Stethoscope [11]. Stethoscope allows for
data collection, display and modi�cation. However, it is limited to real-time
programs running under VxWorks and does not o�er support for the kind of
high-level, cross-system debugging that autonomous systems require.

There are some recently developed tools for debugging and verifying par-
allel systems that are related to our research. For example, ParaGraph [4]
provides a variety of visualizations of di�erent aspects of a parallel system.
Another such tool is PIE [7], which operates with the Mach operating sys-
tem. A number of tools have been developed for debugging and verifying
multi-threaded programs, including tnfview [6]. However, none of these tools

2

can o�er the cross-system and high-level debugging and veri�cation support
needed by autonomous systems. For more information on parallel and dis-
tributed programming visualization tools see [1,16].

2 Data collection

The data collection demands of distributed control programs range from low-
level sensory data to the program's internal state. The data collection routines
have the following requirements:

� Data collection in real time

� Data logging to a database

� Flexible sampling rates

� Grouping of data into logical sets

� Triggering options (e.g., allowing only data in certain ranges to be collected
or only when it has changed)

The data collection tools we have developed are geared towards the C/C++
programming language, although through foreign function calls other pro-
gramming languages (such as Lisp and Java) can access them. Our goal was
to replicate the ease-of-use of the printf command in C, while allowing for
more control and for distributed operation. In essence, what we have imple-
mented is a remote printf capability called rlog.

Rlog is implemented as a set of libraries that allow you to instrument
your program and send the output to a variety of di�erent places, e.g., the
screen, a �le, a remote computer or a database. The types of data that can
be logged are: character, unsigned character, short integer, unsigned short
integer, integer, long integer, unsigned long integer,
oating point number,
double
oating point number and character string.

We support logging on the following platforms: Linux, Solaris, IRIX, and
NetBSD. We are currently working on a VxWorks port. As much as possible,
the code avoids operating system dependent calls to allow for easy porting to
new platforms.

2.1 Rlog functions

The data collection capabilities of our system are contained in a library that
the client program compiles into its code. This library contains a wide variety
of di�erent logging functions. This section describes each logging function and
what it does.

2.1.1 Initialization

The client must call rlogInitType for each output type they want to be active.
For example the call rlogInitType(argc, argv, "debug1") will initialize
the output associated with debug1. Optional plugin-speci�c options can follow

3

the output type, but these are discouraged in favor of command-line arguments
or specifying the arguments in the con�guration �le.

2.1.2 Cleanup

Prior to a client program exiting, or whenever it is �nished using an output
type, it should call rlogCleanupType(type) for each output type, or just
rlogCleanup() to cleanup all initialized types. This ensures any open �les or
ports get closed and any allocated memory is freed.

2.1.3 General logging

The following functions provide general logging capabilities:

� rlogEvent: This call logs a list of variables once, similar to printf. It
takes an arbitrary number of parameters so any number of variables can be
logged at once. The �rst parameter speci�es an event name to associate the
variables with. This can be any character string. The second parameter is a
format string indicating the data type and name of each of the parameters
following it. Each variable to be logged will have an entry in the form of
\type[:name]" where the type is the data type and the optional name is the
name of the data (not necessarily the same as the variable name). Each
entry is separated in the string by a space.

� rlog: This is a simpli�ed version of rlogEvent, which sets the event name
to a default value.

� rlogEnableEvent: This function enables logging for the speci�ed event.
When rlogEvent is called the event will be logged.

� rlogDisableEvent: This function disables logging of an event. Any call to
rlogEvent will be ignored for the speci�ed event.

� rlogOutputFormat: This function controls how the data is displayed by the
various text output plugins (see Section 2.2).

� rlogEventPrintf: In this function the output format is determined by the
format string, much like the printf function, instead of the current output
format set by rlogOutputFormat. It has an equivalent rlogPrintf which
uses the default event name as well.

2.1.4 Change-only logging

There are many instances when the developer only wants to log a value when
it changes { for example the internal state variables. We have implemented
the following functions to log change-only data:

� rlogRegisterVariable: This function adds the variable to a list that is
checked whenever the \
ush" function (see next item) is called.

� rlogFlushChanges: Logs all registered variables whose values have changed
since the last call. All
ushed variables will have the same time stamp.

4

� rlogUnregisterVariable: Removes a variable from the list so that it is no
longer logged when the
ush function is called.

� rlogUnregisterAllVariables: Unregisters all registered variables.

2.1.5 Conditional logging

There are instances when the developer will only want to log a value under
certain conditions. While they can do this by embedding an rlog call inside
of an if-then, we have provided functions that perform this for them. These
include:

� rlogRegisterEventCondition: It is in this call that you de�ne the logging
condition. For example, that a value be less than a certain number. This call
returns an ID that is used in the rest of the conditional logging functions.

� rlogSetVariableCondition: This function lets you apply the condition
speci�ed in the previous function to a speci�c variable. Now when any
logging call is made on that variable the condition is �rst checked before
logging happens.

� rlogUnSetVariableCondition: The condition is no longer checked before
logging the variable.

� rlogUnRegisterEventCondition: When a condition is no longer needed
this function removes it from being checked.

There are some other more specialized functions that are also available. See
the rlog WWW site (http://www.traclabs.com/rlog/) for details.

2.1.6 Function entry and exit

An important part of debugging distributed programs is knowing whether and
when functions have been called and when they have �nished executing. In
addition to the functions listed below, we have developed scripts that will
read a C/C++ �le and automatically add function entry and exit logging
commands to each function in that �le.

� rlogLogFunctionEntry: Logs the entry into a function. Place this (or have
the script automatically place it) at the beginning of a function.

� rlogLogFunctionExit: Logs the exit from a function.

� rlogEnableFunctionEntryLogging: Start logging function entries.

� rlogDisableFunctionEntryLogging: Stop logging function entries.

� rlogEnableFunctionExitLogging: Start logging function exits.

� rlogDisableFunctionExitLogging: Stop logging function exits.

2.2 Output plug-in modules

RLog uses GNU Libtool to portably use dynamically loadable modules for
the output plugins. Dynamically loadable modules are similar to shared li-

5

Computer 1

Program 1

File Output
Plugin

Screen Output
Plugin

RLog Library

File

Fig. 1. The developer's program (Program1) is compiled with the RLog libraries.
Plug-ins can be loaded at run-time and direct the output to various places. Multiple
output destinations can be used. A Null destination turns o� logging.

braries. They allow users to change library functions without recompiling
their program. Figure 1 shows a typical con�guration.

There are four types of plugins available for use with the RLog library, and
details for implementing custom plugins are available on the RLog web site.
The four types of plug-ins currently available are:

� Text plugins include the screen and �le plugins. They output the logged
data in text format using the format speci�ed by the rlogOutputFormat

call, or the default format if rlogOutputFormat hasn't been called.

� Database plugins include two MySQL plugins. Each of them use a di�erent
schema for storing the data in the database. The database may reside
either on the local machine or a remote machine by specifying a di�erent
host name. More details of the database are given in Section 2.4.

� Socket plugins are used to send the logged data to the RLog server on a
remote machine. The TCP plugin uses raw sockets for sending the data.
The IPC plugin uses the IPC library and server available from CMU to
send the data. The RLog server handles time stamping the remote data as
described in Section 2.5.

� The NULL plugin is used to disable logging. This allows the logging code
to remain in the client in case future debugging is needed.

2.3 Con�guration �le

Rlog uses a con�guration �le to determine what output modules are to be used.
This allows the developer to change output locations without recompiling any
code. The con�guration �le is called rlogDestinations.txt and is located in the
current working directory, or the full path may be speci�ed by the environment
variable RLOG DESTINATION FILE. Each record in this �le consists of two
�elds and an optional third �eld. Comments in the �le begin with a semicolon

6

and continue until the end of the line. The �rst �eld is a character string
containing any characters except white space (not including a semicolon). This
�eld is the label which will be used in the client code to identify what output
plugin module to send logged data to. A generic name, such as \debug1"
or \app1dest1" is preferred over a name describing the actual output plugin
module like \�leOutput". This will allow changing what output the label is
attached to without recompiling code (or having \�leOutput" actually send
data to the TCP output).

The second �eld speci�es the full path to the output plugin module includ-
ing the module name but without the extension. For example \/tmp/rlogFile"
might specify the �le module.

The third �eld is optional. It speci�es the command line arguments for
the module. For example the �le module can take the \-f"
ag to specify the
output �le so -f /tmp/rlogOutput.txt would specify logging the data to the
�le \/tmp/rlogOutput.txt".

2.4 Database

One option for storing collected data is an SQL relational database. This gives
the user access to powerful search and retrieval capabilities. For this project
we have chosen the MySQL database (http://www.mysql.com). We chose this
database because it is freely available and runs on the platforms we use.

Once the database was chosen we needed to design a schema for storing
our data. A schema is a set of database tables with related data. We have
implemented two di�erent schemas; they both have their pros and cons. Per-
formance testing shows that they perform similarly (see Section 2.6).

2.4.1 Schema 1

The �rst schema consists of two tables. The �rst is called CommonData which
assigns a unique Id for each entry and stores the event name and timestamp
for each logging call. The second table is the ItemData table which stores the
information for each variable logged. All of the information in the second table
is stored as strings (i.e., all types of variables are converted to strings). These
records will be tied to the CommonData table entry using the Id generated in
that table.

CommonData Table Layout

� Id - an integer �eld set up as the primary key and auto incremented.

� MachineName - internally generated by rlog, the name of the computer
where the program is running that called the log function.

� TimeStamp - a date-time �eld holding the date/time that the log function
was called. Internally generated by rlog.

7

� Microseconds - The microsecond part of the timestamp, needed since the
date-time data type does not go to this precision.

� EventName - The name of the event being logged. In the case of rlog a
default EventName is used.

ItemData Table Layout

� Id - an integer �eld which corresponds to the Id �eld in CommonData. The
plugin must match this up since MySQL does not support foreign keys.

� ItemType - a character �eld of length 50, this is a text description of the
data type of this variable.

� ItemName - a character �eld of length 100, this is the name of the variable
as speci�ed in the format statement. If no name was speci�ed then a default
name will be generated for internal use.

� ItemValue - a character �eld of length 100, this is the value of the variable
converted into a character string.

� ItemOrder - an unsigned integer �eld specifying the order in the argument
list that this variable appears.

2.4.2 Schema2

The second schema consists of 12 tables: one for the logged event data and one
each for the di�erent data types that RLog supports. The EventData table is
identical to the CommonData table of the �rst schema. It assigns a unique Id
for each entry and stores the event name and timestamp for each logging call.
The individual data type tables will contain the variable information. These
records will be tied to the EventData table entry using the Id generated in
that table.

EventData Table Layout

� Id - an integer �eld set up as the primary key and auto incremented.

� MachineName - internally generated by rlog, the name of the computer
where the program is running that called the log function.

� TimeStamp - a datetime �eld holding the date/time that the log function
was called. Internally generated by rlog.

� Microseconds - The microsecond part of the timestamp, needed since the
datetime data type does not go to this precision.

� EventName - The name of the event being logged. In the case of rlog a
default EventName is used.

The table layout for each of the eleven logged data types looks like the follow-
ing:

� Id - an integer �eld which corresponds to the Id �eld in EventData. The
plugin must match this up since MySQL does not support foreign keys.

8

Computer 1

Program 1

RLog
TCP

Output
Plugin

Computer 3

Program 3

RLog
TCP

Output
Plugin

Computer 2

Program 2

RLog
TCP

Output
Plugin

Server

RLog Server
MySQL

File

TCP
Input

Plugin

MySQL
Output
Plugin

File
Output
Plugin

Fig. 2. Programs running on di�erent computers can log data via TCP/IP to
a central (server) computer. The data logged on the server can be directed to
several destinations, including a MySQL database. The server also determines
timing o�sets amongst the computers and adjusts time-stamps appropriately.

� ItemName - a variable length character �eld of max length 100, this is the
name of the variable as speci�ed in the format statement. If no name was
speci�ed then a default name will be generated for internal use.

� ItemValue - a �eld of whatever data type this table stores, this is the value
of the variable.

� ItemOrder - an unsigned integer �eld specifying the order in the argument
list that this variable appears.

In addition to de�ning the schemas, we have written C/C++ code to insert
data into the database and to extract data from the database. In this way,
the user of our logging tools does not need to know SQL or anything about
the internals of the relational database. The tools insert and extract all of the
data for the user.

2.5 Distributed logging

By using the socket output modules (see Section 2.2), data from di�erent
programs running on di�erent machines can be logged to a central location.
The computer at the central location must be running an rlogServer program
to collect the data. Figure 2 shows an instance of distributed logging.

When collecting data generated by di�erent processes on distributed ma-
chines there needs to be some way to time stamp the data using a common
clock. The rlogServer is the process that collects all of the data on a host com-

9

puter and sends it to the database (or other location). When the rlogServer
receives a data message from a di�erent (remote) computer it starts a new
thread that sends a request to that remote computer for the time o�set. It
then applies that o�set to the received message and all subsequent messages
from that remote computer. It polls the remote computer every 2 minutes
to update the time o�set. If no response is given by the remote computer
then the time stamp is unchanged. The remote machine must be running a
rlogTimeServer that was written by us to determine the o�set. This server
takes minimal CPU time since it is called very infrequently.

Time o�sets are calculated based on the formula published in RFC 2030
[8]. The following is the relevant part of RFC 2030 for our purposes:

\To calculate the roundtrip delay d and local clock o�set t relative to the
server, the client sets the transmit timestamp in the request to the time of day
according to the client clock in NTP timestamp format. The server copies this
�eld to the originate timestamp in the reply and sets the receive timestamp
and transmit timestamp to the time of day according to the server clock in
NTP timestamp format.

\When the server reply is received, the client determines a Destination
Timestamp variable as the time of arrival according to its clock in NTP times-
tamp format. The following table summarizes the four timestamps:

Timestamp Name ID When Generated

Originate Timestamp T1 time request sent by client

Receive Timestamp T2 time request received by server

Transmit Timestamp T3 time reply sent by server

Destination Timestamp T4 time reply received by client

Then the roundtrip delay d and local clock o�set t are de�ned by:

d = (T4� T1)� (T2� T3)

and

t =
((T2� T1) + (T3� T4))

2
RFC 2030 claims accuracy to \within a few tens of milliseconds." Of course

this is true only at the point in time that this message is sent and received.
Therefore the RLog server will periodically poll the client for a new time o�set
(currently once every 2 minutes).

2.6 Rlog performance

We have run some performance measures of the rlog libraries for the di�erent
outputs. The platform used for these tests was the following:

� CPU: Intel Pentium III @ 800Mhz

10

Null 0.009

File 0.053

Screen 0.534

TCP 0.711

IPC 0.750

MySQL1 0.347

MySQL2 0.382

Table 1
The number of seconds it takes to make 100 calls of rlog for the di�erent output

possibilities. This includes initialization and cleanup.

� Memory: 256 Meg.

� OS: RedHat Linux 6.2

� Model: Dell Dimension XPS B800r desktop computer

Table 1 shows the number of seconds it takes to call the rlog function 100
times for the di�erent outputs possibilities. These numbers are an average
of 10 sets of 100 calls for all datatypes and the initialization and cleanup
functions required of rlog using the platform speci�ed above.

3 Data analysis

Distributed control programs tend to produce massive amounts of output data
that, due to non-deterministic latencies and execution times, are often not re-
producible exactly from run to run. Rather than looking for exact matches
with known (successful) runs, programmers often are interested in detect-
ing the occurrence (or absence) of particular temporal patterns in the data.
These patterns are often repetitive (e.g., \whenever the water level is above a
given threshold, the pump should be turned on within 30 seconds") and may
themselves be composed of other patterns (e.g., turning on the pump may be
composed of a sequence of more primitive events).

To handle this type of data analysis, we have designed a temporal logic
geared towards such patterns, and have implemented an initial version of a
tool that checks collections of patterns against a database of logged output.
The logic, called ITCL (Interval Temporal Checking Logic) combines features
of RTIL[10] and RTL [5]. We started with RTIL and RTL because their
goal was also to determine if the execution of a real-time (not distributed)
program is consistent with a formal description of the program behavior. All
the other logics we looked at were designed for \model checking" and they
restrict their language to be able to apply veri�cation methods. The main
reason why existing logics were not suÆcient for our needs was based on our

11

need to relate interval sets in di�erent ways instead of relating two intervals.
Also, we need to work with both: interval sets and event sets.

The basic primitives in ITCL are events (�), which correspond to entries in
the log database, and intervals(
), which are de�ned in terms of a pair of time
points. A time point, in turn, can be the time at which an event occurs, or
some point in time relative to an event (e.g., 3 seconds after event e1 occurs,
written as e1 !3). The logic enables sets of events (�) and intervals (�) to
be de�ned, which can then be unioned, di�erenced, and iterated over (using
a \forall" statement in the logic).

One can also de�ne intervals based on conditions (e.g., the intervals of
time during which a condition P holds, written as [P]), and by using \search"
operators. A search operator () or () extends an interval from a starting
event until the next occurrence of an ending event (or searches from an ending
event back to a starting event). For instance, the interval e1) e2 is the
period between when the event e1 occurs and the next occurrence of event
e2. Similarly, e1 (e2 is the period that ends when e2 occurs and begins

with the previous occurrence of event e1. Search operators are most useful
in creating interval sets. For instance, [e1) e2] is the set of all intervals
in the log database where event e1 is followed by an event e2. Note that
the intervals formed in this way may overlap. For instance, if the database
has the events e1, e1, e2, then there would be two intervals in the set, each
starting with a di�erent instance of event e1, but ending at the same event e2.
In contrast, [e1 (e2] would have only one interval in the set (extending
from the second e1 event up to the e2 event).

In addition to the standard Boolean operators, our logic also includes func-
tions for accessing the beginning and ending events of an interval, the time
that an event occurs, several Boolean functions for determining the temporal
relationship between events and between intervals, and ways of restricting an
expression to be evaluated during some subset of an interval (such as at the
start, end, or throughout the interval). Table 2 sumarizes some of these ITCL
operators, with examples shown in Figure 3. Also, Table 3 shows some macros
to express temporal relations between intervals and events.

Operations between interval sets like union, substraction, conjunction and
disjunction have been de�ned in order to make it easy express situations like:
\Action a3 must start after interval a1 and a2 and..." (union) or "The system
must be working while it is connected except when there is no water in the

wicktank or the condensate tank is full" (substraction), etc.

Conditions are evaluated in intervals to see if they become true eventually
(�), always (�), before the interval (/), at the beginning of the interval (4),
at the end of the interval (5) or after the interval (.).

3 The result of this expression is an interval set with only one interval (
4.5). �9 means
any event of the �9 event set.

12

Symbol Meaning Examples Figure 3

) Search forward for next event �1 � �1) �2

(Search backward for next event �2 � �1 (�2

! New event (set) as time after event (set) �6 � �4 ! 6

 New event (set) as time before event (set) �5 � 8 �4

[Union of two interval sets �4 � �1 [�2

\ Substraction of two interval sets �5 � �1 \ �2

" Event(s) starting an interval (set) �1 � " �1

Event(s) ending an interval (set) �2 � # �1

4 First subinterval (set) of an interval (set)
9 �
4.5 4

5 Last subinterval (set) of an interval (set)
10 �
4.5 5

. Interval (set) after
11 �
4.5 .

/ Interval (set) before
8 �
4.5 /

? Null interval set ? � �4) �2

/ Restricts interval set with conditions fx:�4/x include �9g 3

time(�) Time when event � occurs time(�1.2) is 24

j �=� j Items in event set � (interval set �) j �2 j is 3

Table 2
Event and interval operators.

10 20 40

φ2.1 φ3.1
706050

γ8 γ9 γ10 γ11
γ1.1,γ4.2 γ5.1

φ4.1 φ9.3φ1.1 φ3.2 φ1.2 φ2.2 φ9.1 φ2.3 φ9.2
γ2.3, γ4.5γ2.2,γ4.3γ2.1,γ4.1

γ1.2,γ4.4 γ6.1 γ7.1

Φ1 = {φ1.1, φ1.2, φ1.3, ...}
...

...

represents any element of φ1
...

Φ1

represents any element of γ1
...

Γ1Γ1 = {γ1.1, γ1.2, γ1.3, ...}

φ5.1 φ6.1

Fig. 3. Events � are grouped into event sets � and intervals
 into interval sets � .

We have developed an initial implementation of a tool that interprets ITCL
expressions and checks their validity with respect to the logging output col-
lected in a �le or database. The tool works by constructing interval and event
sets and performing operations on them. Whenever a formula evaluates to
\false", the tool constructs a counterexample showing how some particular
combination of events leads to the error. The idea is that this information
will help the user to pinpoint bugs in the distributed system.

13

MACRO EQUIVALENCE

1 intersects
2 time("
1) < time(#
2) ^ time(#
1) > time("
2)

1 include � time("
1) � time(�) ^ time(#
1) > time(�)

1 include
2 time("
1) � time("
2) ^ time(#
1) � time(#
2)

�1 isbefore[t1,t2] �2 time(�1) + t1 � time(�2) ^ time(�1) + t2 �time(�2)

�1 isbefore(t1,t2] �2 time(�1) + t1 < time(�2) ^ time(�1) + t2 �time(�2)

�1 isbefore[t1,t2) �2 time(�1) + t1 � time(�2) ^ time(�1) + t2 > time(�2)

�1 isbefore(t1,t2) �2 time(�1) + t1 < time(�2) ^ time(�1) + t2 > time(�2)

Table 3
Some operators for temporal relations between intervals and events.

At this stage, the tool is working over the full ITCL language (this paper
has described only a subset of the language). While it is somewhat ineÆcient,
especially when dealing with nested \forall" statements, it is suÆcient for us
to evaluate its utility. We are currently working to develop more patterns for
the Water Recovery System (see next section), and will be testing the data
analysis tool against real data in the near future. We are also evaluating the
usability of the language. To this end, we are adding higher-level constructs
(\syntactic sugar") to make it easier to specify common types of rules (such as
\always do X, T seconds after Y") and are developing a graphical user interface
that will enable users to specify ITCL formula and view any counterexamples
found.

4 Data visualization

In addition to data analysis we provide some simple tools to visualize the data
in the database. These tools are implemented in Java and extract information
from the database and display it. There are three types of displays: 1) raw
data; 2) plotting of values against time; and 3) plotting of two values against
each other. When you start the data viewer it communicates with the database
and provides you with a list of items that can be viewed (see Figure 4). These
items can be displayed across time (Figure 5) or two items can be displayed
with respect to each other (Figure 6). This is still a very preliminary data
viewer and the emphasis in our project has not been on visualization. We
hope others will contribute to this aspect of the project.

5 An example

To illustrate the integration of our data collection and analysis tools we use
an example for which we have real data. The example is the control program

14

Fig. 4. The data viewer allows the developer to choose the items they wish to
display.

Fig. 5. Multiple items can be displayed across time.

15

Fig. 6. Multiple items can be displayed across time.

for an advanced life support system at NASA Johnson Space Center [2]. This
life support system, the Water Recovery System (WRS), has over 70 sensors
and as many actuators. There are four subsystems that are controlled by
four independent controllers implemented in C. These controllers themselves
receive commands from a LISP-based reactive planner. We instrumented one
of the C-based controllers for a single subsystem and logged its data. We
are in the process of logging the other three C-based controllers. Also, all
logging described in this paper was done using a detailed simulation of the
actual hardware. We are currently installing the logging on the actual running
system.

We instrumented a single subsystem so that all sensor readings were logged
on a \change-only" basis (meaning that the sensor was logged only when its
value changed) and all actuator commands were logged also on a change-only
basis. An example of a logging command is:

rlogRegisterVariable("HeaterPower",RLOG_INT,&heater_power)

which means that the variable heater_power, which is an integer, is to be
logged when it changes and the identi�er for this variable is \HeaterPower".
This variable is connected to a sensor that measures the power consumption
of the heater.

In addition, we logged the entries and exits to control functions called by
the LISP-based reactive planner. At the same time we logged the parame-
ters passed to these functions. These functions are used by the LISP-based
reactive planner to change control set-points, to query for information and to

16

shutdown or start various subsystem components. An example of a function
entry logging command is:

rlogLogFunctionEntry("turn_valve_enable");

Followed by a logging of the parameters to the function:

rlogEvent("turn_valve_params", "string:valve string:value",

params->valve, params->value);

Where the valve is a string and the value is a string (e.g., \on" or \o�").
These last two rlog calls will create an entry in the database (with a time-
stamp) when the turn valve function is called and also a separate entry for
the parameters to that function.

For data analysis purposes, one would like to de�ne rules for the Water
Recovery System that must be adhered to in any correct implementation of
the control program. For instance, one would like to say that the watt meter
must report some power draw when the wick tank level is over L or when the
over
ow tank is over level M and the manual pump is on. This can be written
in ITCL as:

wick over L = [wick tank.level > L];

overflow & pump = [(overflow tank.level > M) ^

(manual pump.stat � `on')];

power draw = wick over L \ overflow & pump;

8 it2 1: power draw f

it2 1 � (power report.pw03 > 0)

g;

The �rst formula de�nes an interval set during which the wick tank level
is over L. The second one de�nes an interval set where the over
ow tank is
over level M and the manual pump state is `on'. The third statement de�nes
an interval set as the union of the �rst two. Finally, the last formula says that
in each such interval the watt meter must always be reporting positive power.
A slightly more complex set of formulae enables us to say that whenever the
wick tank reaches a level over L or the over
ow tank reaches a level M and
the manual pump is `on', the heaters must be turned on for at least 20 time
units.

twenty after = "power draw) ("power draw! 20);

8 it2 2: twenty after f

it2 2 � (heaters.stat � `on')

g;

We can use the power draw interval set since it has been de�ned before.
The �rst formula de�nes an interval set as the periods of twenty minutes from
the beginning of the intervals included in the power draw interval set. The last
formula says that in each such interval the state of the heaters must always
be `on'.

17

6 Conclusions

Taken together, the data collection and data analysis tools o�er distributed
control program developers the ability to see what their programs are doing
and verify correct behavior. We believe that they will make debugging and
verifying distributed programs easier. Of critical importance are the useability
of the tools { if the tools are not easy to use then developers will not adopt
them. We have tried to make our logging library as easy as printf to encourage
wide use. The analysis tools require more of a learning curve, but we plan
to provide graphical and textual interfaces to those. We encourage anyone
interested to download our logging tools at: http://www.traclabs.com/rlog/
and to give us feedback on how they can be improved.

7 Acknowledgments

This work is supported by NASA grant NAS2-99020 administered by NASA
Ames Research Center. Pete Bonasso of Metrica Inc./TRACLabs is the chief
software engineer of the WRS control system and worked with us to instru-
ment and analyze the control code. Mark Shirley of NASA Ames Research
Center was a key participant in this project and contributed many ideas to
the preliminary design.

References

[1] Appelbe, W., J. Stasko and E. Kraemer, Applying program visualization
techniques to aid parallel and distributed program development, Technical
Report TR GIT-GVU-91-08, Georgia Institute of Technology (1991).

[2] Bonasso, R. P., Intelligent control of a NASA advanced water recovery system,
in: Proceedings of the Sixth International Symposium on Arti�cial Intelligence,
Robotics and Automation in Space (i-SAIRAS 2001), 2001.

[3] Bonasso, R. P., R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller and M. Slack,
Experiences with an architecture for intelligent, reactive agents, Journal of
Experimental and Theoretical Arti�cial Intelligence 9 (1997).

[4] Heath, M. and J. Etheridge, Visualizing the performance of parallel programs,
IEEE Software 8 (1991).

[5] Jahanian, F. and A. K. Mok, Safety analysis of timing properties in real-time
systems, IEEE Transactions on Software Engineering 12 (1986).

[6] Kleiman, S., D. Shah and B. Smaalders, \Programming with threads," SunSoft
Press, Mountain View CA, 1996.

[7] Lehr, T., D. Black, Z. Segall and D. Vrsalovic, MKM: Mach kernal monitor
description, examples and measurements, Technical Report TR CMU-CS-89-
131, Carnegie Mellon University (1989).

18

[8] Mills, D., Simple network time protocol (sntp) version 4 for ipv4, ipv6 and osi
(http://www.faqs.org/rfcs/rfc2030.html) (1996).

[9] Muscettola, N., P. P. Nayak, B. Pell and B. C. Williams,Remote Agent: to boldly
go where no AI system has gone before, Arti�cial Intelligence 103 (1998).

[10] Razouk, R. R. and M. M. Gorlick, A real-time interval logic for reasoning about
executions of real-time programs, SIGSOFT SE Notes 114 (1989).

[11] Schneider, S., Real-time data monitoring and visualization, Technical Report
White Paper, available at www.rti.com, Real Time Innovations Inc. (1987).

[12] Simmons, R., An architecture for coordinating planning, sensing and action, in:
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling
and Control, 1990.

[13] Simmons, R., Structured control for autonomous robots, IEEE Transactions on
Robotics and Automation 10 (1994).

[14] Simmons, R. and G. Whelan, Visualization tools for validating software of
autonomous spacecraft, in: i-Sairas, 1997.

[15] Tsai, J., Y. Bi, S. Yang and R. Smith, \Distributed Real-Time Systems:
Monitoring, Visualization and Analysis," Wiley & Sons, New York, 1996.

[16] Tsai, J. and S. Yang, \Monitoring and Debugging of Distributed Real-Time
Systems," IEEE Computer Society Press, Los Alamitos, CA, 1995.

19

