routes with nodes at a higher level. We have not yet
implemented hierarchies in our direction network.

Several extensions will have to be made for this net-
work to scale-up. As routes get stronger, activity may
get out of control if inhibitory links are not added. For
example, as one direction out of a node gets activated,
this could inhibit activation of other directions. Also, we
would like to add a compensatory learning rule so that
the network can adapt to large-scale changes in the envi-
ronment. In compensatory learning, links are weakened
as well as strengthened. For example, if the robot has
frequently traversed a route from A to B to C and then
is forced to begin traversing a route from A to B to D,
the link from B to C would weaken as the link from B
to D strengthens. Adding a compensatory learning rule
to our system would be a minor next step. Finally, we
are interested in applying directional spreading activa-
tion networks to non-spatial domains. We hope that the
focus of activity and the directionality of sequences that
this network representation gives us will be helpful in
solving other, non-spatial problems.

In summary, we have extended the traditional spread-
ing activation concept as it applies to navigation such
that more spatial information can be encoded while still
using the original tools. This approach enhances tra-
ditional networks by reducing their reliance on external
cues for orientation and by further focusing the search
for routes. In addition the routes that are returned are
automatically encoded with spatial information. Such
capabilities are especially critical for mobile robots giv-
ing their limited perceptual abilities to date. By making
the robot’s representations better reflect its experiences
and usage of those representations we can shift some of
the burden of navigation from the robot’s perceptual sys-
tem to the representations themselves hence bestowing
the ability to take advantage of the robot’s strengths
while minimizing its weaknesses.
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Figure 6: The network of Figure 4 is superimposed on the
hallways and rooms of the basement of our laboratory,
showing the detection of gateways. The distance from D
to H is about 12m.

coalesces at a central sub-goal. Also important is that
many of the nodes in the network had zero activity dur-
ing the search (only active nodes are represented in the
figure). The directionality of the search causes whole ar-
eas of the network to be excluded from the search space.
This reduces confusion in the system.

The three failures in the test cases were caused by
a common problem in spreading activation networks.
When links between nodes are very strong, a subgoal can
be found when activation comes from only a single direc-
tion. For example, the start node can activate a tightly
connected neighboring node above threshold without any
activation from the goal node. A number of these er-
rors can be solved by tediously tweaking the network’s
learning rate and its subgoal threshold. We didn’t have
enough experience with the parameters of this network
to successfully eliminate some errors. However, even the
best networks will fall prey to this problem.

5 Mobile robot issues

We have begun implementing a mobile robot navi-
gation system that will have the directional spreading
activation network outlined in this paper at its heart.
However, before we could get to the stage of traversing
and remembering routes using an actual robot, several
issues needed to be addressed. While these issues are
not the thrust of this paper, a brief overview of how
we are approaching them will allow for the directional
spreading activation network to be put into context (see
[Kortenkamp et al., 1992b] for more details on the mobile
robot implementation).

5.1 Detecting nodes

The first issue that needed to be addressed is where
the robot detects nodes. We have defined certain places
in the environment as gateways. Gateways mark the
transition from one space to another. In an indoor envi-
ronment, gateways can be entrances to rooms, intersec-
tions of hallways or turns. Gateways are detected by us-
ing sonar sensors on the robot. The sonar sensors search
for openings that are large enough to pass through. Once
the robot passes through the opening it calls it a gate-
way and creates a node. The direction through which
the robot passed is the forward direction of the node.
Our gateway detection algorithm has been shown to be
reliable and repeatable on an actual mobile robot in an
actual indoor environment [Kortenkamp et al., 1992a].
Figure 6 superimposes the hallways and rooms in the
basement of our laboratory on the network constructed
in Figure 4 and shows the gateways between them. All
of the gateways shown can be detected by our sonar al-
gorithm.

5.2 Recognizing nodes

While we have a reliable algorithm for detecting gate-
ways, this algorithm, using only sonar sensors, cannot
detect a specific gateway. Gateways, in and of themselves
are not very distinguishable. To help us distinguish indi-
vidual gateways we do two things. First, we classify each
gateway as a certain type (e.g., intersection, entrance to
room, etc.). Second, we use a camera to store visual cues
that are available at the gateway. Currently, only verti-
cal edges are used as visual cues. By matching the type
of gateway, the vertical edges and by knowing the ex-
pected gateway given the robot’s previous location, we
have shown that the robot will be able to distinguish
where it is (see [Kortenkamp et al., 1992b]).

One significant problem that using a real robot
presents over the simulation used in this paper is rec-
ognizing the same place when it is approached from dif-
ferent directions. If this is not done, there will be no
network, only a collection of routes and, thus, no way
of combining pieces of several routes to create new ones.
We are still examining how to use various geometric and
environmental constraints to overcome this problem.

6 Conclusions

The major limitation of the network discussed in this
paper is that it is far more complex than an ordinary
network, because it is encoding much more information.
This limits the lengths of routes that can be extracted.
However, as is demonstrated in NAPS, hierarchy can be
used to overcome this limitation by representing long
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Figure 4: An experimental network with 13 nodes, 32
in-nodes, 32 out-nodes and 33 links.

rather then spreading the activation through the entire
network. This can result in less confusion for the robot
and more clarity in its route extraction.

A final advantage of directional spreading activation
networks is that they can serve as a stepping stone to
larger, more spatial representations that represent the
overall spatial structure of the environment. Directional
networks still only represent directions between neigh-
boring places; directions between distant places would
require an additional level of representation. We are ac-
tively working on mechanisms and representations for
this level, both in a complete theory of human cognitive
mapping and a related project on cognitive mapping for
mobile robots [Chown et al., 1992].

4 Preliminary results

We have constructed (in simulation) a large, direc-
tional network of places and tested its ability to extract
routes. The network is pictured in Figure 4. It corre-
sponds to a series of hallways and rooms in the basement
of our laboratory. The nodes correspond to places that
have been experimentally determined to match those
places that our actual robot recognizes as distinctive with
its sonar sensors (see the next section for details on this
process). Thus, while all results are in simulation since
it would have taken too long to conduct extensive exper-
iments with a real robot, the network corresponds to a
network that an actual robot would construct.

The network was formed by traversing four routes: A-
B-C-D-E-F, F-E-G-H, F-E-G-I-J, and J-I-K-L-M-C-B-A.
The first and last routes where traversed four times and
the middle two routes where traversed three times. After
the network was formed, it was tested using 26 pairs of
start and goal nodes and seeing if a correct subgoal node
was found. A subgoal is considered correct if it lies on
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Figure 5: The spread of activation from start node A to
goal node E of the network in Figure 4 is shown. Each
node has in-nodes and out-nodes, some have several of
both as multiple routes pass through. Each node that
was activated above 0.0 is shown. The threshold is at
0.75. A sub-goal node is decided when both an in-node
and an out-node of a node are above threshold, as is
shown with arrows for node C.

a path between the start and the goal and the correct
in-nodes and out-nodes corresponding to the start and
goal direction are activated. Of the 26 pairs of start and
goal locations, 23 were processed correctly. Considering
the small amount of time we have been experimenting
with this network, the results are heartening. FEven well-
tuned systems, such as NAPS, only get success rates in
the low 90 percent range.

Figure 5 shows how activity spreads through the net-
work during a typical search. Notice how fatigue causes
activity to slowly move through the network, almost as
two waves from the start and the goal, until the activity



route will be preferred. There is significant adaptive ad-
vantage in biasing toward the familiar, as the familiar
route will usually be the safer route since it has been
traversed repeatedly in the past and, therefore it is more
likely that future traversals will be successful.

Route are made stronger by incrementing the
strengths on the connections between nodes with each
traversal of a route. The equation for incrementing is
taken from NAPS and is:

S(1) = S(1) + (1 — S(1))? + LR,

where S is the strength of connection [, and LR was the
learning rate (set to 0.20 for most of our experiments).

In addition, when a node is repeatedly visited, it gets
more resources, making it more resistant to fatigue (fa-
tigue is discussed in the next section). Resources are
increased by the following equation:

R(n) = R(n)+ (1 — R(n))* * LR,

where R is the resources of node n and LR is again the
learning rate.

3 Searching the network

Searching a directional network is similar to that of
many spreading activation networks, such as NAPS, ex-
cept 1t 1s much more directed. First, all of the out-
nodes of the start node are activated (in this implemen-
tation their activation is set to the maximum level of
1.0). Similarly, all of the in-nodes of the goal node are
activated. The simulation then iteratively propagates
activation across each connection. The input activity of
a node is determined by the following equation (similar
to the equation used in NAPS):

Li(n) = Ai(m) % S(lmn),

where A; is the activation level of a node at time ¢, I,
is a connection between node n and node m and S is the
strength of the connection.

After activity is propagated through one generation
of connections (i.e., activation is spread to the immedi-
ate neighbors of each node), each node in the network
is fatigued. Fatigue is a control mechanism that 1s used
in NAPS to prevent the network from becoming too ac-
tive. As a node is activated it consumes resources; the
more highly activated it is, the more resources it con-
sumes. As a node consumes more resources it fatigues
and 1ts activation level is reduced until its resources can
be replenished. Thus, fatigue is dependent upon the ac-
tivation level of the node and the resources that it has.

These combine to produce a fatigue level, which is a value
between 0 and 1 with 0 meaning no fatigue and 1 mean-
ing completely fatigued. Thus, activation of a node n is
updated accordingly by the following equation (similar
to the equation used in NAPS):

Aipr(n) = (1= F(n)) + (Ai(n) + (Li(n) * (1 = Ai(n)))),

where F' is the fatigue level of a node and I; is the net
input activation to the node at time ¢ (calculated above).

After each generation of activation, the network is
searched for a node that has one, and only one, in-node
above a threshold (in the experiments, the threshold was
an activation level above 0.75) and one, and only one,
out-node above a threshold. Such a node is called a sub-
goal. The sub-goal becomes the new goal and the process
is repeated, with one significant difference, since the ac-
tive in-node of the subgoal represents the direction of
the previous node, activation only needs to be spread in
that direction. So only the in-node in that direction is
activated for the new search. However, all out-nodes of
the start place have to be re-activated since no informa-
tion about direction from the start is yet available. The
network is not cleared of activity between each search
as the previous search should have primed the activation
of the route between the start and the goal allowing for
quicker activation of other subgoals.

At the end of the search, the next place in the route
will be known, as will its direction from the current place.
The robot can move to this place and searching for the
next place along the route can begin, On this next search,
the direction to the goal is known (it is the active out-
node of the subgoal) so activity can be concentrated in
this direction. This procedure continues until an entire
route is traversed.

3.1 Advantages of direction

A directional network has several advantages over a
network that does not code direction, such as the network
used by Toto. The first advantage is that the robot now
has a simple, spreading activation means for representing
the direction in which it should turn at each node. At
each node the robot knows where to turn to move to the
next node. In many other spreading activation networks,
such as NAPS or Toto, the robot would have to rely on
external cues, such as landmarks, in order to determine
where to turn to move to the next node if there were
several options.

A second advantage of a directional spreading acti-
vation network is that activation can be more focused.
If the robot knows what direction (in the network) the
goal 1s, then it can focus its activation in that direction,



Figure 2: (a) Connections for the first move. (b) Con-
nections for the turn. (c¢) Connections for the second
move. The fixed, ego-centric orientation of each node is
represented by an arrow.

node of A is connected to the in-node of B, the path
between A and B is uni-directional (if the path where
from B to A then the out-node of B would be connected
to the in-node of A). This represents the fact that routes
are not bi-directional.

Now the robot turns 90 degrees left at B. A new pair
of in-nodes and out-nodes is created and placed at the
90 degree left direction of the node. Now the backwards
in-node of B is connected to the 90 degree left out-node
of B (see Figure 2b). Finally, the robot proceeds to place
C and the backwards in-node of place C is connected to
the 90 degree left out-node of place B, creating an entire
route from A to B to C (see Figure 2c).

2.1 Multiple routes

The previous section showed how a single route
through a series of nodes is connected. If two differ-
ent routes share a common node the same procedure can
be repeated to represent the second route, as is shown
in Figure 3a for a route from A to B to C and from
C to B to D. However, this structure lacks one of the
biggest features of a spreading activation network — the
ability to combine pieces of different route to create a
new route that has never been traversed in its entirety.
For example, given the network in Figure 3a, if we ask
the robot to find a route from place A to place D it will
fail as the connections do not meet at any single node.

Figure 3: (a) Two routes from A to B to C and from C to
B to D. (b) The same representation with internal con-
nections to allow for discovery of novel routes. Arrows
show the ego-centric, forward direction of each node.

The solution is to add internal connections between all
of the in-nodes and all of the out-nodes within a single
node (Figure 3b). This will allow for retrieval of new
routes that are constructed out of pieces of previously
traversed routes. This is also the reason that in-nodes
and out-nodes are constructed in pairs.

With these new internal connections, the spreading
activation network will act like a true network and not
like a collection of single routes. There is considerable
adaptive advantages in having a true network, the most
important advantage is that the robot is not limited to
traversing routes that it has already experiences, but can
find and traverse novel routes.

2.2  Adaptation

As routes are traversed, the network adapts so that
more frequently traversed routes will be stronger than
less frequently traversed routes. This has two conse-
quences. First, frequently traversed routes will be ex-
tracted from the network more quickly, since they are
more easily activated. Since routes that were traversed
frequently in the past will likely be traversed often in the
future, extracting them more quickly is an advantage.
Second, if the robot has traversed two different routes
from one place to another, the one that has been tra-
versed more frequently will be preferred. This is not the
case in many systems, such as Toto, where the shorter



Figure 1: A route containing three nodes, each with a
fixed direction. The route had the robot start at A pro-
ceed to B, turn left and move to C.

2 Constructing the network

The critical difference between our perspective and
that of most researchers in mobile robotics is that we em-
phasize experience whereas most research emphasizes the
finished representation. For example, in Toto, all routes
are considered equal in desirability and bi-directional
(i.e., if the robot can travel one way down it route in
can travel the other way). However, not all routes have
these properties. Some routes, although less optimal,
may be desirable because they pass by landmarks that
the robot can used to orient itself. Other routes can
only be traversed in a single direction, maybe because
the robot can only push a door open and it cannot pull a
door open. Our representation is fundamentally driven
by the robot’s experiences in the environment.

Another critical difference between our representation
and that of other researchers using topological networks
is that our network explicitly encodes direction. Thus,
constructing our network is slightly more difficult than
constructing a traditional topological map. First, each
node in the network has a fixed forward direction and
any other directions from that node are referenced to
the fixed forward. Forward for each node is defined as
the direction away from the previous node (or, in the
case of the first node, the direction in which the robot
was started). For example, Figure 1 shows a route with
three places, A, B and C. Let’s assume that a robot starts
at A and is facing B (i.e., it doesn’t need to turn in
order to reach place B). When the robot reaches B, the
previous place (A) is directly behind it, so the direction
of B is the same as A. Then the robot turns 90 degrees
to the left and approaches place C. The forward of place
C is directly away from the previous place (B). The fixed
forward direction is shown as an arrow in Figure 1. In
this representation the robot only needs to keep track of
its orientation with respect to the place it just left, not
with respect to any other place or to a world coordinate

system. This means that dead reckoning errors will not
accumulate over the entire representation, but will be
confined to travel between places.

A problem with fixing the orientation of nodes is that
the same node can be approached from several different
directions. In Figure 1 for example, if the robot goes
from A to B to C then the nodes are oriented one way,
but if the robot goes from C to B to A the nodes are
oriented a different way. We solve this problem by fixing
the orientation of a node during the first traversal of a
route containing that node. Any other traversal of routes
containing that node are referenced to this fixed orien-
tation, which never changes. This 1s not ideal, as one
can imagine a node having several different “forwards”
depending on the route that is currently being traversed.
Easing this restriction is a current research topic.

Once the orientation of a node is fixed, it is rela-
tively easy to represent directions to and from neigh-
boring nodes. We let each node contain a collection of
sub-nodes, each of which correspond to a direction to or
from that node. There are two kinds of sub-nodes: out-
nodes and in-nodes. Qut-nodes represent the direction
in which the next place along a route lies. In-nodes rep-
resent the direction in which the previous place along a
route lies. Appropriate connections are formed between
in-nodes and out-nodes to create routes. In simple terms
a node represents “I am here”, an out-node represents “I
am on my way to there” and the in-node represents “I
have just left from there” along with directions to the
latter two places. This i1s a significant increase of infor-
mation in the network, but, of course, the network is
also more complex than a traditional spreading activa-
tion network.

Figure 2 shows how the in-nodes and out-nodes along
a route are connected. In-nodes are filled circles and
out-nodes are open circles. Connections between nodes
are represented by the arrows. However, the arrows are
only for clarity of presenting the construction of the net-
work; during activity passing, activation flows in both
directions along a connection. This does not mean that
routes are bi-directional as the in-nodes and out-nodes
explicitly represent direction as will be shown later.

In this example, the robot starts at place A and moves
forward to place B. The forward directions of node A
and node B are fixed, as is shown by the arrows in the
nodes. Then, an out-node and an in-node are created in
the forward direction of A (in-nodes and out-nodes are
always created in pairs, the reason for this will be stated
later) and an out-node and an in-node are created in the
backward direction of B. Then the out-node of A and the
in-node of B are connected, representing the fact that the
robot moved from A to B (see Figure 2a). Since the out-
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Abstract

Spreading activation networks are attractive for
compactly representing and searching a topo-
logical map of places. However, a traditional
spreading activation network that links dis-
tinctive places lacks potentially useful informa-
tion, such as directions, one-way routes and
safe routes that are not optimal. This paper
describes a spreading activation network that
can represent such information without depart-
ing from the simple mechanisms that under-
lie spreading activation networks. The starting
point of this research is the NAPS connection-
st cognitive mapping model. This research is
part of a larger framework for a complete theory
of cognitive mapping in humans and a related
project in developing cognitive maps for mobile
robots.

1 Introduction

Topological or route maps have become increas-
ingly popular in mobile robotics research [Brooks, 1985;
Kuipers and Byun, 1987]. Such maps are attractive
because they encode an environment very compactly
by only storing distinctive places much as humans do
[Byrne, 1979]. A common representation for such maps
is as a spreading activation network, where each node in
the network is a distinctive place and each connection
is a path between two places. An example of such an
implementation is the robot Toto [Mataric, 1990]. Aside
from the compactness issue, spreading activation is at-
tractive because it allows for efficient search, potentially
in parallel, in a fashion that happens to be analogous to
human processing. However, a simple network linking
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distinctive places lacks some potentially useful informa-
tion that we shall show can be encoded simply and ef-
ficiently. First, differentiating connections according to
experience can be helpful because not all paths are cre-
ated equal; some are safer, more familiar, etc. Second,
spreading activation relies on passing activity in both
directions along a path which intrinsically assumes that
all paths are bi-directional. Finally, a connection does
not capture spatial relationships between nodes, only the
fact that they are connected. Networks that do not in-
corporate such information essentially perform breadth-
first searches and return the shortest sequence possible.
Networks which do incorporate this information can fo-
cus search in terms of preferred routes, exchanging the
optimality of minimum distance for a smaller chance of
getting lost or getting into dangerous areas.

While the aim of the system presented in this paper
is for use on mobile robots, many of the ideas are in-
spired by human and animal cognitive mapping. The
optimality we strive for is not necessarily mathematical,
but instead is more practical, recognizing that the real
world is too complex to be perfectly encoded. Our im-
plementation recognizes that errors can occur, but works
to minimize their impact. In turn we argue that these
goals can be accomplished within the spreading activa-
tion framework and don’t require an arsenal of additions
such as marker passing or labeled connections. Our im-
plementation, an extension of the NAPS (Network Activ-
ity Passing Simulation) system [Levenick, 1991], extends
the node and path concept to better reflect experience,
but does so without fundamentally changing their char-
acter. In this paper we show how to construct a direc-
tional spreading activation network of routes and how
to search such a network. We also present some pre-
liminary results using a simulated network and look at
the issues involved in moving the implementation to an
actual mobile robot.
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